• 제목/요약/키워드: cold gas

검색결과 762건 처리시간 0.025초

부탄을 액화 연료로 사용한 냉가스 추진 시스템에 대한 연구 (Study of Cold Gas Propulsion System Utilizing Butane as Liquefied Propellant)

  • 강석진;권기범;조동현;이상현
    • 한국항공우주학회지
    • /
    • 제35권4호
    • /
    • pp.323-328
    • /
    • 2007
  • 소형 인공위성의 전형적인 추진 시스템인 냉가스 추진 시스템에 액화 연료를 직접 적용하여 성능을 분석하였다. 고려하는 액화 연료 냉가스 추진 시스템과 일반적으로 사용되는 질소 추진 시스템의 성능을 비교하였다. 질소 추진 시스템과 동일한 질량 조건, 동일한 부피 조건, 동일한 총 임펄스 조건에서 각각 액화 연료를 사용한 냉가스 시스템의 성능과 필요한 연료 탱크의 부피, 필요한 추진 시스템의 질량을 산출하였다. 액화 연료를 사용한 냉가스 추진 시스템은 일반적인 질소 추진제를 사용한 시스템보다 성능, 부피 및 질량 등에서 많은 이점을 가지며 냉가스 추진 시스템에 직접적으로 적용이 가능함을 알 수 있었다.

신차단방식 SF$_{6}$ 가스 차단기의 소전류 차단성능 연구 (Investigation of Small Current Interruption Performance for New Type of Interrupting Chamber in SF$_{6}$ Gas Circuit Breaker)

  • 송원표;권기영;이재성;송기동;김맹헌;고희석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권11호
    • /
    • pp.519-526
    • /
    • 2005
  • This paper presents computer simulation results for developing new type of SF$_{6}$ Circuit Breaker in terms of cold gas flow after small current interruption. This cold gas flows down a nozzle into the chamber of a circuit breaker. There are many difficult problems in analyzing the gas flow due to complex geometry, moving boundary, shock wave and so on. When predicting the dielectric capability of a gas circuit breaker after interruption, the gas pressure and density distributions due to the cold gas must be considered in addition to the electrical field imposed across the gas. A self-coded computational fluid dynamics (CFD) program is used for the simulation of cold gas flow in order to evaluate the electrical field characteristic across open contacts and transient characteristics of insulations after small current interruption.

EFFECTS OF CAM PHASE AND SPARK RETARD TO INCREASE EXHAUST GAS TEMPERATURE IN THE COLD START PERIOD OF AN SI ENGINE

  • KIM D.-S.;CHO Y.-S.
    • International Journal of Automotive Technology
    • /
    • 제6권6호
    • /
    • pp.585-590
    • /
    • 2005
  • The effects of spark timing and exhaust valve timing change on exhaust gas temperature during cold start period of an SI engine are studied through engine bench tests. The exhaust gas temperature increases when the spark timing or valve timing are retarded individually, due to late combustion or slow flame speed. Therefore, exhaust gas temperature shows a large increase when the two timings are retarded simultaneously. However, it is considered that combustion stability during cold start deteriorated under these retarded conditions. To increase exhaust gas temperature for fast warmup of catalysts while maintaining combustion stability, an optimal condition for spark and valve timing retard should be applied for the cold start period.

스파크 점화기관의 냉시동시 배기밸브 타이밍 및 점화시기 변화에 따른 배기가스의 온도변화 (Variation of Exhaust Gas Temperature with the Change of Spark Timing and Exhaust Valve Timing During Cold Start Operation of an SI Engine)

  • 양창석;박영준;조용석;김득상
    • 대한기계학회논문집B
    • /
    • 제29권3호
    • /
    • pp.384-389
    • /
    • 2005
  • Experimental study of variation of exhaust gas temperature was carried out with the changes of spark timing and exhaust valve timing during the cold start operation of an SI engine. To investigate the effects of these variables on combustion stability, cylinder pressure and exhaust gas temperature were measured and analyzed. Experimental results showed that exhaust gas temperature increased when spark and exhaust valve timings were retarded from the baseline cases. However, combustion stability during cold start deteriorated under the retarded conditions. To increase exhaust gas temperature for fast warmup of catalysts while maintaining combustion stability, an optimal condition for spark and valve timing retard should be appied for the cold start period.

초음속 저온분사법에 의해 적층된 알루미늄 층의 재료 물성 (Material Properties of Thick Aluminum Coating Made by Cold Gas Dynamic Spray Deposition)

  • 이재철;안성훈
    • 한국정밀공학회지
    • /
    • 제23권10호
    • /
    • pp.88-95
    • /
    • 2006
  • Cold gas dynamic spray is a relatively new coating process by which coatings can be produced without significant heating during the process. Cold-spray uses supersonic gas flow to carry metallic powders to the substrate. Its low process temperature can minimize thermal stress and also reduce the deformation of the substrate. Most researches on cold-spray have focused on micro scale coating, but in this study macro scale deposition was conducted. Properties of aluminum layer by cold-spray deposition such as coefficient of thermal expansion (CTE), modulus of elasticity. hardness, and electric conductivity were measured. The results showed that properties of aluminum layer by cold-spray deposition were different from properties of pure aluminum and aluminum alloy.

초음속 저온분사법에 의한 알루미늄 합금 모재의 변형과 적층된 알루미늄 층의 물성에 대한 연구 (Study about material properties of Al particles and deformation of Al alloy substrate by cold gas dynamic spray)

  • 이재철;안성훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.145-148
    • /
    • 2006
  • Cold gas dynamic spray is a relatively new coating process by which coatings can be produced without significant heating during the process. Cold gas dynamic spray is conducted by powder sprayed by supersonic gas jet, and generally called the kinetic spray or cold-spray. Cold-spray was developed in Russia in the early 1980s to overcome the defect of thermal spray method. Its low process temperature can minimize thermal stress and also reduce the deformation of the substrate. Most researches on cold-spray have focused on micro scale coating, but our research team tried to apply this method to macro scale deposition. The macro scale deposition causes deformation of a thin substrate which is usually convex to the deposited side. In this research, the main cause of the deformation was investigated using 6061-T6 aluminum alloy and properties of deposited aluminum layer such as coefficient of thermal expansion, Elastic modulus, hardness, electric conductivity were measured. From the result of the analysis, it was concluded that compressive residual stress was the main reason of substrate deformation while CTE had little effect.

  • PDF

HI gas kinematics of galaxy pairs in the Hydra cluster from ASKAP pilot observations

  • Kim, Shin-Jeong;Oh, Se-Heon
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.61.1-61.1
    • /
    • 2020
  • We examine the HI gas kinematics and distribution of galaxy pairs in group or cluster environment from high-resolution Australian Square Kilometre Array Pathfinder (ASKAP) WALLABY pilot observations. We use 22 well-resolved galaxies in the Hydra cluster of which 4 galaxies are visually identified as pairs and others are isolated ones. We perform profile decomposition of HI velocity profiles of the galaxies using a new tool, BAYGAUD which enables us to separate a line-of-sight velocity profile into an optimal number of Gaussian components based on Bayesian MCMC techniques. All the HI velocity profiles of the galaxies are decomposed into kinematically cold or warm gas components with their velocity dispersion, 4~8 km/s or > 8 km/s, respectively. We derive the mass fraction of the kinematically cold gas with respect to the total HI gas mass, f = log10(M_cold / M_HI), of the galaxies and correlate them with their dynamical mass. The cold gas reservoir of the paired galaxies in the Hydra cluster is found to be relatively higher than that of the isolated ones which show a negative correlation with the dynamical mass in general.

  • PDF

LNG 냉열이용 지역집단 냉방시스템에 대한 연구 (A Study on the District Community Cooling System using LNG Cold Energy)

  • 김청균;김승철
    • 한국가스학회지
    • /
    • 제14권6호
    • /
    • pp.27-30
    • /
    • 2010
  • 본 논문은 LNG 냉열에너지를 이용한 지역집단 냉방에너지 시스템을 공급하기 위한 시스템 공정설계에 관한 연구이다. 새로이 개발한 LNG 냉방시스템은 여러 개의 열교환기, LNG 저장탱크, 열매체 저장탱크, 여러 개의 냉열에너지 저장탱크, 가스냉방기, 압축기, 정압기, 저온 및 고온에너지 공급배관 등으로 구성되도록 설계하였다. 또한, 가스냉방기는 여름철에 도시가스 소모량에 의해 충분하지 못한 LNG 냉열에너지를 안정적으로 공급하기 위해 설치되었다. 냉방에너지 공급시스템은 공기라는 열매체와 200kcal/kg의 냉열에너지를 가진 LNG 사이의 열교환 작용에 의해 냉방에너지를 공급하는 효율성과 안전성을 함께 갖추고 있다. 또한, LNG 냉열에너지를 이용한 지역집단 냉방에너지 공급시스템은 공기중으로 CO2나 프레온 가스를 방출하기 않는다는 장점을 간고 있다.

Design and Exergy Analysis for a Combined Cycle of Liquid/Solid $CO_2$ Production and Gas Turbine using LNG Cold/Hot Energy

  • Lee, Geun-Sik
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제15권1호
    • /
    • pp.34-45
    • /
    • 2007
  • In order to reduce the compression power and to use the overall energy contained in LNG effectively, a combined cycle is devised and simulated. The combined cycle is composed of two cycles; one is an open cycle of liquid/solid carbon dioxide production cycle utilizing LNG cold energy in $CO_2$ condenser and the other is a closed cycle gas turbine which supplies power to the $CO_2$ cycle, utilizes LNG cold energy for lowering the compressor inlet temperature, and uses the heating value of LNG at the burner. The power consumed for the $CO_2$ cycle is investigated in terms of a solid $CO_2$ production ratio. The present study shows that much reduction in both $CO_2$ compression power (only 35% of the power used in conventional dry ice production cycle) and $CO_2$ condenser pressure could be achieved by utilizing LNG cold energy and that high cycle efficiency (55.3% at maximum power condition) in the gas turbine could be accomplished with the adoption of compressor inlet cooling and regenerator. Exergy analysis shows that irreversibility in the combined cycle increases linearly as a solid $CO_2$ production ratio increases and most of the irreversibility occurs in the condenser and the heat exchanger for compressor inlet cooling. Hence, incoming LNG cold energy to the above components should be used more effectively.

BAF 소둔의 저온점 변화에 관한 연구

  • 김순경;이승수;전언찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.327-331
    • /
    • 1997
  • As demand for various kinds and small lot products has been increasing, batch annealing has been appreciated for its small restiction for the opteration. The cold spot of the coil is very important in the BAF(Batch annealing furnace) annealing process. Because of the annealing cycle time in the BAF, annealing was decided on the cold spot of the coil. So, we tested the effect,variation of cold spot, for hydrogen contents of atmospheric gas at the annealing furnace. As a result of several investigations. We confirmed the following characteristics ; after the heating and soaking,the cold spot of coil moved to 1/3 of coil thickness in the NHx atmospheric gas, but the mid point of the coil thickness is the cold spot in the Ax or .H/sub2. atmospheric gas. Therefore, the use of hydrogen instead of nitrogen as the protective gas,combined with high convection in batch annealing furnaces, has shown that considerable increases in furnace output and material quality are attainable. Owing to the low density, high diffusion and reducing character of hydrogen, a better transfer resulting in uniform material temperatures and improved coil surfaces can be achieved.