• 제목/요약/키워드: cold fuel characteristics

검색결과 134건 처리시간 0.021초

고분자 연료전지시스템의 기동 및 정지특성에 관한 연구 (A Study on the Start-up and Shut-down Characteristics for PEMFC System)

  • 이정운;서원석;김영규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.29-32
    • /
    • 2008
  • Testing was conducted to determine the performance of a residential fuel cell system when subjected to DSS and WSS operation, especially for start-up and shut-down characteristics. In terms of start-up time, it took about 70min to start output power generation and stably to reach 1kW at cold start. Measurement of the characteristics of heat and power generation were carried out at start-up and shut-down time. Fuel gas is used for heating both reformer and stack from start-up to the beginning of power generation. In terms of start-up and shut-down characteristics, it was important to control the reformer temperature precisely. The average output water temperature during the rated output operation(960W) was $63.2^{\circ}C$ constantly. The results of the investigation are being used to develop a new test protocols for residential fuel cell system.

  • PDF

차량 연료시스템에서의 정전기 축적특성 연구 (A Study on Electrostatic Charging Characteristics in Vehicle Fuel Systems)

  • 서준호;나병철;김진용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2157-2162
    • /
    • 2004
  • As the friction between two mated materials generates electrostatic voltage, vehicles especially in the cold climate has been accumulated an electrostatic voltage by the reason of fuel flow in the fuel line, air flows out side of vehicle, etc. In this study, investigations of electrostatic discharge characteristics has been carried out in the fuel systems of gasoline engines depending on the environment temperature. For the experiment, conventional fuel filters(paint coated steel case) and specially made testing equipment are prepared. The experimental results shows, an accumulation speed of electrostatic voltage depends on the environmental temperature and new methods of testing procedures are required compare to SAE standards.

  • PDF

현대 FFV(Flexible Fuel Vehicle) 개발 (Research and development of Hyundai FFVs(flexible fuel vehicles))

  • 명차리;이시훈;박광서;박심수
    • 오토저널
    • /
    • 제14권6호
    • /
    • pp.67-73
    • /
    • 1992
  • This paper describes Hyundai's research and development work on a flexible fuel vehicle (FFV). The work on FFV has been conducted to evaluate its potential as an alternative to the conventional gasoline vehicle. Hyundai FFV described here can be operated on M85, gasoline, or any of their combinations, in which the methanol concentration is measured by an electrostatic type fuel sensor. For that operation, a special FFV ECU(Eletronic Control Unit) has been developed and incorporated in the FFV. The characteristics affecting FFV operation, such as FFV ECU control strategy and injector flow rate, have been investigated and optimized through the experiment. And various development tests have been performed in view of engine performance, durability, cold startability, and exhaust emissions reduction. The exhaust gas aftertreatment system consisting of manifold type catalyst and secondary air injection system shows good emission reduction performance including formaldehyde, and finally, the possibility of the FFVs as the low emission vehicles is evaluated by presenting NMOG(Non-Methane Organic Gases) levels with respect to M0 and M85. With these results, it is concluded that FFV can be a candidate for the low emission vehicles, but more works on its durability improvement is required.

  • PDF

DISTRIBUTION OF FUEL MASS AFTER WALL IMPINGEMENT OF DIESEL SPRAY

  • Ko, K.N.;Huh, J.C.;Arai, M.
    • International Journal of Automotive Technology
    • /
    • 제7권4호
    • /
    • pp.493-500
    • /
    • 2006
  • Investigation on the fuel adhering on a wall was carried out experimentally to clarify the characteristics of impinging diesel sprays. Diesel sprays were injected into a high-pressure chamber of cold state and impinged to a wall having various impingement distances and ambient pressures. Photographs of both the fuel film and the post-impingement spray were taken through a transparent wall. Adhered fuel mass on a wall was measured by means of dividing into two types of fuel state: the fuel film itself; and sparsely adhered fuel droplets. Adhering fuel ratio was predicted and further the distribution of fuel mass for impinging diesel spray was analyzed as a function of time. As result, with an increase of the ambient pressure, both the maximum fuel film diameter and the adhered fuel ratio decreased. Based on some assumptions, the adhering fuel mass increased rapidly until the fuel film diameter approached the maximum value, and then increased comparatively gradually.

하나로 핵연료 시험루프의 주냉각수 계통 유동해석 (The flow characteristics of a Main Cooling Water System for Nuclear Fuel Test Loop Installed in HANARO)

  • 박용철;이용섭;지대영;안성호;김영기
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.444-447
    • /
    • 2008
  • A nuclear fuel test loop (after below, FTL) is installed in IR1 of an irradiation hole in HANARO for testing neutron irradiation characteristics and thermo hydraulic characteristics of a fuel loaded in a light water power reactor (PWR) or a heavy water power reactor (CANDU). There is an in-pile section (IPS) and an out-pile section (OPS) in this test loop. When HANARO is normally operated, the fuel loaded in the IPS has a nuclear reaction heat generated by a neutron irradiation. To remove the generated heat and to maintain an operation condition of the test fuel, a main cooling water system (MCWS) is installed in the OPS of the FTL. The pump can not continuously suck a fluid and not pressurize the fluid during a cold function test. To verify the flow characteristics of the MCWS, a flow net work analysis has been conducted. When the higher elevation pipelines wholly filled with coolant, it was confirmed through the analysis results that the pump pressurized the coolant normally. And the analysis results described the system characteristics with operation temperature and pressure variation satisfactorily.

  • PDF

합성가스를 첨가한 SI 엔진의 냉간시동 유해 배기가스 저감에 관한 연구 (A Study on Reductions of Cold Start Emissions with Syngas Assist in an SI Engine)

  • 송춘섭;가재금;홍우경;박정권;조용석;김창기
    • 한국자동차공학회논문집
    • /
    • 제19권4호
    • /
    • pp.114-120
    • /
    • 2011
  • Fuel reforming technology for the fuel cell vehicles has been frequently applied to internal combustion engine for the reduction of engine out emissions. Since syngas which is reformed from fossil fuel has hydrogen as a major component, it has abilities to enhance the combustion characteristics with wide flammability and high speed flame propagation. In this paper, syngas was feed to a 2.0 liter SI engine with MPI to improve exhaust emissions under cold start and early state of idle condition. Syngas fraction is varied to 0%, 10%, 25%, with various ignition timings. Exhaust emission characteristics and the exhaust system temperature were measured to investigate the effects of syngas addition on cold start. Result showed that HC emission could be dramatically reduced due to the fact that syngas has $H_2$ and no HC as components. The amount of $NO_x$ emission was decreased with the increase of syngas fraction. Because the dilution effect of $N_2$ and the retard of ignition timing reduces the peak combustion temperature inside the cylinder. Exhaust gas temperature was lower than that of gasoline feeding condition. Retarded ignition timing, however, resulted in increased exhaust gas temperature approximated to gasoline condition. It is supposed that the usage of syngas in an SI engine is an effective solution to meet the future strict emission regulations.

오리기름으로부터 합성된 바이오젤의 연료특성 연구 (The Study of Fuel Properties for Biodiesel Derived from Duck's Oil)

  • 임영관;이천호;정충섭;임의순
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.103.2-103.2
    • /
    • 2010
  • Biodiesel was well known for eco-friendly alternative fuel for petrodiesel. But biodiesel have disadvantage such like it was derived from food resource which was high price. In this study, We synthesized the biodiesel from duck's oil which was food trash via transesterification under base catalyst. After analytic result of density, kinematic viscosity, cold temperature characteristics, lubricity and cetane number which were main fuel characteristics, this duck's biodiesel have enough to fuel specification for except of domestic winter season.

  • PDF

FUEL PROPERTIES AND EMISSIONS CHARACTERISTICS OF ETHANOL-DIESEL BLEND ON SMALL DIESEL ENGINE

  • Xu, B.Y.;Qi, Y.L.;Zhang, W.B.;Cai, S.L.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.9-18
    • /
    • 2007
  • Phase separation and low cetane number are the main barriers to the large-scale use of ethanol-diesel blend fuel on small diesel engines. In this paper, an additive package is designed on the basis of the blended fuel properties to overcome these limitations. The experiments show that the solubility of ethanol in diesel is evidently increased by adding $1{\sim}2%$ (in volume) of the additive package and the flammability of ethanol-diesel blend fuel with the additive has reached the neat diesel level under the cold start conditions. Effects of the ethanol content in diesel on fuel economy, combustion characteristics, and emission characteristics are also investigated with the ethanol blend ratios of 10%, 20% and 30%. The increase in ethanol content shows that the specific fuel consumption and the brake thermal efficiency are both gradually increased compared to neat diesel. The soot concentrations of the three blended fuels are all greatly lower than that of neat diesel. $NO_x$ emission is increased with an increase in the engine load and is reduced with the increase in the ethanol blend ratio under a high load.

경유의 저온특성에 따른 농용 디젤엔진의 저온시동성 (Starting of Farming Diesel Engines According to Characteristics of Light Oil at Low Temperature)

  • 신승엽;김학주;이용복;김병갑;윤진하;김기택;양대준
    • Journal of Biosystems Engineering
    • /
    • 제28권1호
    • /
    • pp.11-18
    • /
    • 2003
  • This study was carried cut to get basic data of troubles in starting and supply of farm diesel engines in cold winter. The results of the study are summarized as follows: 1. As the result of farm survey. the proportions of farms which had starting problems or troubles in fuel supply in cold winter for the last 5 years were 38% for the farms with power-tillers and 32% for the farms with tractors. Most of the farms which had starting problems or troubles in fuel supply in cold winter used light oil for summer. spring or fall rather than for winter. 2. As the result of fuel supply test, fuel supply was stopped at -6$^{\circ}C$ and -18$^{\circ}C$ for summer light oil and winter light oil. respectively 3. The lowest temperatures of winter light oil for starting engine were -7.5$^{\circ}C$ for power-tiller. -12.5$^{\circ}C$ for tractor of 38ps, and -17.5$^{\circ}C$ for tractor of 45ps. which were 5~7.5$^{\circ}C$ lower than that of summer light oil. 4. The performance of engine starting and the trouble of fuel supply system at lower temperature were significantly improved by using winter hight oil rather than summer light oil.

다양한 연료온도 조건에 있어서의 기존 가솔린과 F-T합성 가솔린의 분사율 특성 비교 연구 (A Comparative Study on the Injection Rate Characteristics of Conventional and F-T Synthetic Gasoline Under Various Fuel Temperatures)

  • 손지현;배규한;문석수
    • 한국분무공학회지
    • /
    • 제28권3호
    • /
    • pp.143-149
    • /
    • 2023
  • Amidst the drive towards carbon neutrality, interest in renewable synthetic e-fuels is rising rapidly. These fuels, generated through the synthesis of atmospheric carbon and green hydrogen, offer a sustainable solution, showing advantages like high energy density and compatibility with existing infrastructure. The physical properties of e-fuels can be different from those of conventional gasoline based on manufacturing methods, which requires investigations into how the physical properties of e-fuels affect the fuel injection characteristics. This study performs a comparative analysis between conventional and Fischer-Tropsch (F-T) synthetic gasoline (e-gasoline) across various fuel temperatures, including the cold start condition. The fuel properties of F-T synthetic and conventional gasoline are analyzed using a gas chromatography-mass spectrometry technique and the injection rates are measured using a Bosch-tube injection rate meter. The F-T synthetic gasoline exhibited higher density and kinematic viscosity, but lower vapor pressure compared to the conventional gasoline. Both fuels showed an increase in injection rate as the fuel temperature decreased. The F-T synthetic gasoline showed higher injection rates compared to conventional gasoline regardless of the fuel temperature.