• Title/Summary/Keyword: cold bonded

Search Result 44, Processing Time 0.023 seconds

Comparison of shear bond strengths of different types of denture teeth to different denture base resins

  • Prpic, Vladimir;Schauperl, Zdravko;Glavina, Domagoj;Catic, Amir;Cimic, Samir
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.376-382
    • /
    • 2020
  • PURPOSE. To determine the shear bond strengths of different denture base resins to different types of prefabricated teeth (acrylic, nanohybrid composite, and cross-linked) and denture teeth produced by computer-aided design/computer-aided manufacturing (CAD/CAM) technology. MATERIALS AND METHODS. Prefabricated teeth and CAD/CAM (milled) denture teeth were divided into 10 groups and bonded to different denture base materials. Groups 1-3 comprised of different types of prefabricated teeth and cold-polymerized denture base resin; groups 4-6 comprised of different types of prefabricated teeth and heat-polymerized denture base resin; groups 7-9 comprised of different types of prefabricated teeth and CAD/CAM (milled) denture base resin; and group 10 comprised of milled denture teeth produced by CAD/CAM technology and CAD/CAM (milled) denture base resin. A universal testing machine was used to evaluate the shear bond strength for all specimens. One-way ANOVA and Tukey post-hoc test were used for analyzing the data (α=.05). RESULTS. The shear bond strengths of different groups ranged from 3.37 ± 2.14 MPa to 18.10 ± 2.68 MPa. Statistical analysis showed significant differences among the tested groups (P<.0001). Among different polymerization methods, the lowest values were determined in cold-polymerized resin.There was no significant difference between the shear bond strength values of heat-polymerized and CAD/CAM (milled) denture base resins. CONCLUSION. Different combinations of materials for removable denture base and denture teeth can affect their bond strength. Cold-polymerized resin should be avoided for attaching prefabricated teeth to a denture base. CAD/CAM (milled) and heat-polymerized denture base resins bonded to different types of prefabricated teeth show similar shear bond strength values.

Fatigue Strength Evaluation of Adhesive Bonded and Mechanical Pressed Joints of Cold Rolled Steel Sheet (냉간압연강판 접착 및 기계적 프레스 접합부의 피로강도 평가)

  • Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The tensile and fatigue experiments were conducted with tensile-shear specimens for investigating the strength of adhesive bonded and mechanical press joints of SPCC steel sheet used in the field of the automobile industry. The optimal punch press force was evaluated 50kN for combining epoxy adhesive bonding and mechanical press joining with a diameter of 8.3mm using SPCC sheet with a thickness of 0.8mm. The combining epoxy adhesive bonding and mechanical press joining exhibits the maximum tensile force of 750N. The fatigue strengths of the combination of adhesive bond and mechanical press joint and pure adhesive joint were evaluated 370N and 320N at 106cycles, respectively. These values correspond to 22% and 20% of their maximum tensile forces, respectively. However, the fatigue strength of the combination of adhesive bond and mechanical press joining was much lower than that of pure mechanical press joining.

Application of Thin Bonded Concrete Overlay for Concrete Pavement Rehabilitation using Type III Cement (조강시멘트를 이용한 도로포장 박층 덧씌우기 공법의 실용화 연구)

  • 박정준;백상현;정재헌;엄주용;윤경구;엄태선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.493-498
    • /
    • 1999
  • Many concrete pavements closed to the end of service life in out country need to repair. We investigated material and mix designs for thin bonded concrete overlay and applied it to concrete pavement rehabilitation. The concrete with Type III cement showed earlier strength and better durability than the concrete with Type I cement. Designed concrete mixture with TypeIII cement made it possible to open the road earlier against heavy vehicles, increased traffic despite of cold weather in winter. In the field examination after four month, there was no defects like as shrinkage crack, spalling, surface abrasion and scaling, and good traffic condition has been maintained.

  • PDF

알루미늄의 常溫壓接에 관한 硏究 II

  • 강문진;이철구;엄기원
    • Journal of Welding and Joining
    • /
    • v.4 no.1
    • /
    • pp.32-39
    • /
    • 1986
  • This paper was studied about the influence of oxidized films on workability in cold pressure welding. In preceding studies, the principal foci of the studies about pressure welding were considered several factors(surface manufacturing methods, surface roughness, pressure welding speed and surface temperature). But the influence to the growth of oxidation have hardly known well. So the purpose of this paper consists in solving the question above and proposing the optimal states of the pressure welding. Therefore the results obtained is as the following; When the oxidation time is within about 2 minutes, the bonding strength is very good after surface manufacturing of the neighboring to be bonded. The more surfaces are fine the more bonding strength is excellent. Above all, the optimal condition of cold pressure welding is the state that the characteristic value is 38% with smooth surface and without oxidation.

  • PDF

Numerical study on the rotation capacity of CFRP strengthened cold formed steel beams

  • Serror, Mohammed H.;Soliman, Essam G.;Hassan, Ahmed F.
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.385-397
    • /
    • 2017
  • Currently, CFRP (Carbon Fiber Reinforced Polymer) plate bonding is used quite extensively as a strengthening method. In this technique, a composite CFRP plate or sheet of relatively small thickness is bonded with an adhesion material to steel or concrete structure in order to improve its structural behavior and strength. The sheets or plates do not require much space and give a composite action between the adherents. In this study, the rotation capacity of CFRP-strengthened cold-formed steel (CFS) beams has been evaluated through numerical investigation. Studies on different structural levels have been performed. At the beam level, C-section has been adopted with different values of profile thickness, web height, and flange width. At the connection level, a web bolted moment resistant type of connection using through plate has been adopted. In web-bolted connections without CFRP strengthening, premature web buckling results in early loss of strength. Hence, CFRP sheets and plates with different mechanical properties and geometric configurations have been examined to delay web and flange buckling and to produce relatively high moment strength and rotation capacity. The numerical results reveal that CFRP strengthening may increase strength, initial stiffness, and rotation capacity when compared with the case without strengthening.

Application of Single Lap-Shear Test for Extracting Adhesive Bonding Strength of Coating Layer on Galvannealed sheet (합금화용융아연코팅강판의 코팅층 접합강도 평가를 위한 단일 겹치기이음 시험의 적용)

  • Lee, Jung-Min;Lee, Cha-Joo;Lee, Sang-Gon;Ko, Dae-Cheol;Kim, Byung-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.238-243
    • /
    • 2007
  • This paper is designed to estimate the adhesion strength of coating layer on galvannealed steel sheet using lap shear test. The single lap shear test is the most commonly used standard test for determining the strength of medium-strength and high strength bonds. The bond strength of bonded single lap joints on subjecting the substrates to loads is determined by lap shear forces in the direction of the bonded joint. In this study, specimen for adhesion strength test was made to attach coated sheet to cold rolled sheet and were heated in temperature of 180 for 20minutes. After test, detached parts of coatings on coated sheet were observed using SEM and EDX to identify substrate and complete detachment. The tested results showed that adhesive strength of coating is unrelated to anisotropy of sheet and is difficult to be extracted using conventional theory because of fine cracks of coating layers which were created during annealing process.

  • PDF

Hygrothermal Effect on the Strength of Carbon/Epoxy Composite Single-Lap Bonded Joints (고온습도 및 저온 환경이 복합재 접착 체결부 강도에 미치는 영향 연구)

  • Song, Min-Gyu;Kweon, Jin-Hwe;Choi, Jin-Ho;Kim, Hyo-Jin;Song, Min-Hwan;Shin, Sang-Joon;Byun, Jai-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.119-128
    • /
    • 2010
  • The hygrothermal effect on the strength of composite single-lap bonded joints were investigated. The specimens were manufactured in four different manufacturing methods and tested in three different environmental conditions. An interesting result is that the strengths of the joints in the elevated temperature and wet (ETW) conditions were found to be 11 ~ 23% higher than those in the room temperature and dry (RTD) environment. In contrast, the strengths of the joints in the cold temperature and dry (CTD) condition decrease by 8 ~ 21% compared to those in the RTD environment except for cobonded joint. The difference in the strength by testing environments is mainly attributed to the change of the material properties of adhesive by temperature and moisture.

Behavior Evaluation of Thin Bonded Continuously Reinforced Concrete Overlay on Aged Jointed Concrete Pavement(2) (노후 줄눈 콘크리트 포장 보수를 위한 얇은 연속 철근 콘크리트 덧씌우기 포장의 거동 평가(2))

  • Ryu, Sung-Woo;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.101-110
    • /
    • 2010
  • In this paper, it has been studied about the CRCO to maintain or rehabilitate the aged JCP. The CRCO and JCO was constructed at useless section of Seo-Hae-Ahn express highway in South Korea. The performance evaluation was conducted. Especially, it was focused on the roll of longitudinal reinforced steels inserted into the CRCO. On crack survey results from field construction section, the reflection cracks at joint of the existing pavement occurred in CRCO. However, due to the constraints of longitudinal reinforced steels, crack width was small. Total crack length and quantity in the CRCO more than that in the JCO. And crack spacing in the CRCO was narrower than it in the CRCP. Through the bonding strength test results, if the cold milling and cleaning as well as surface treatment is applied, there will be no debonding problem at interlayer in the early age. From analysis of the horizontal behavior at the joint, the longitudinal reinforced steels constrained crack width which became wider than initial state over time. Also, that steel in the CRCO reduced the horizontal movement due to temperature variation(4 times than that in the JCO). But, if interface is debonded, the roll decreased. Vertical VWG data showed that CRCO did not occur debonding problem at steel location, but there was some problem in JCO. It was confirmed by field coring. The tensile strain appeared in the CRCO, But the compressive strain occurred in the JCO in early age. Through the FWD test result, deflection in the CRCO was less than that in the JCO. And K value in the CRCO was greater than it in the JCO.

Cooling Efficiency and Growth of Tomato as Affected by Root Zone Cooling Methods in Summer Season (고온기 근권냉방방식에 따른 냉방효과와 토마토 생육)

  • 이재한;권준국;권오근;최영하;박동금
    • Journal of Bio-Environment Control
    • /
    • v.11 no.2
    • /
    • pp.81-87
    • /
    • 2002
  • This study was conducted to investigate the cooling efficiency and growth of tomatoes by root zone cooling device using a pad-box and cultivated system. The structure of the root zone cooling system using a pad-box was four piece of pads bonded an the side and a fan set at the bottom. Cool wind was generated by the outside air which was punched at intervals of 10 cm along three rows. Cold wind flowed to the root zone in the culture medium. The root zone cooling efficiency of cold wind generation by using a pad-box flowing through a wet-pad was determined. Major characteristic of this cuttural system consist of bed filled with a perlite medium and a ventilation pipe using PVC. The cold wind generation by a pad box (CWP) was compared to that of cold wind generation by a radiator (CWR), cold water circulation using a XL-pipe (CWX) and the control (non-cooling). When the temperature of water supplied was 16.2-18.4$^{\circ}C$, temperatures in the medium were 20.5~23.2$^{\circ}C$ for CWP 22.7~24.2$^{\circ}C$ for CWR, 22.8~24.27$^{\circ}C$ for CWX and 23.1~-29.6$^{\circ}C$ for the control. The results show that the cold wind temperature using the pad-box was lower by 1~2$^{\circ}C$ than that of cold water circulation in the XL-pipe and lower by 5~6$^{\circ}C$ than that of the control. Growth such as leaf length, leaf width, fresh weight and dry weight, was greater in three root zone cooling methods than in the control. Root activity was higher in the rat zone cooling methods than in the control. However, there was no significant difference among root zone cooling methods.

Effect of different binders on cold-bonded artificial lightweight aggregate properties

  • Vali, Kolimi Shaiksha;Murugan, S. Bala
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.183-193
    • /
    • 2020
  • The present investigation is to identify an optimum mix combination amongst 28 different types of artificial lightweight aggregates by pelletization method with aggregate properties. Artificial aggregates with different combinations were manufactured from fly ash, cement, hydrated lime, ground granulated blast furnace slag (GGBFS), silica fume, metakaolin, sodium bentonite and calcium bentonite, at a standard 17 minutes pelletization time, with 28% of water content on a weight basis. Further, the artificial aggregates were air-dried for 24 hours, followed by hardening through the cold-bonding (water curing) process for 28 days and then testing with different physical and mechanical properties. The results found the lowest impact strength value of 16.5% with a cement-hydrated lime (FCH) mix combination. Moreover, the lowest water absorption of 16.5% and highest individual pellet crushing strength of 36.7 MPa for 12 mm aggregate with a hydrated lime-GGBFS (FHG) mix combination. The results, attained from different binder materials, could be helpful for manufacturing high strength artificial aggregates.