• Title/Summary/Keyword: coke syngas

Search Result 13, Processing Time 0.024 seconds

A Review of Technology Development Trend for Hydrogen and Syngas Production with Coke Oven Gas (코크스 오븐 가스(COG)를 이용한 수소 및 합성가스 제조 기술 개발 동향 분석)

  • Choi, Jong-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1247-1260
    • /
    • 2022
  • The steel industry accounts for about 5% of the total annual global energy consumption and more than 6% of the total anthropogenic carbon dioxide emissions. Therefore, there is a need to increase energy efficiency and reduce greenhouse gas emissions in these industries. The utilization of coke oven gas, a byproduct of the coke plant, is one of the main ways to achieve this goal. Coke oven gas used as a fuel in many steelmaking process is a hydrogen-rich gas with high energy potential, but it is commonly used as a heat source and is even released directly into the air after combustion reactions. In order to solve such resource waste and energy inefficiency, several alternatives have recently been proposed, such as separating and refining hydrogen directly from coke oven gas or converting it to syngas. Therefore, in this study, recent research trends on the separation and purification of hydrogen from coke oven gas and the production of syngas were introduced.

Enhancement of coke resistance on Ni/MgO-$Al_2O_3$ catalyst in combined $H_2O$ and $CO_2$ reforming of $CH_4$ for the syngas production (합성가스 생산을 위한 복합개질 반응에서 $Ni/MgO-Al_2O_3$ 촉매의 탄소 침적 저항성 향상에 관한 연구)

  • Koo, Kee-Young;Roh, Hyun-Seog;Jung, Un-Ho;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.727-730
    • /
    • 2009
  • Highly active and stable nano-sized Ni catalysts supported on MgO-$Al_2O_3$ calcined from hydrotalcite-like materials have been successfully developed with a strong metal to support interaction (SMSI) to enhance the coke resistance in combined $H_2O$ and $CO_2$ reforming of $CH_4$ (CSCRM) for syngas ($H_2$/CO=2) production. The change of the surface area and NiO crystallite size with varying the pre-calcination temperature of support and Mgo content was investigated in relation to the coke resistance. As increasing the pre-calcination temperature, the surface area decreases and the metal to support interaction becomes weak. As a consequence, the coke deposition was more severe on catalysts pre-calcined at high temperature. It was concluded that highly dispersed Ni metal in the surface of Ni/MgO-$Al_2O_3$ catalyst (MgO=30 wt%) pre-calcined at $800^{\circ}C$ had a strong metal to support interaction (SMSI) resulting in an increase of coke resistance and high activity.

  • PDF

Gasification of Coal-Petroleum Coke-Water Slurry in a 1 ton/d Entrained Flow Gasifier (1톤/일 분류층가스화기에서 석탄과 석유코크스 혼합 슬러리의 가스화특성)

  • Yoon, Sang Jun;Choi, Young-Chan;Hong, Jai-Chang;Ra, Ho Won;Lee, Jae Goo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.561-566
    • /
    • 2008
  • Gasification plant using petroleum coke for refinery and power generation process is increased from considering petroleum coke as a valuable fuel. In this study, gasification of petroleum coke was performed to utilize petroleum coke and to develop essential technology using 1T/D coal gasification system. In case of petroleum coke gasification, because of lower reactivity, consumption of oxygen is higher than coal gasification. The calorific value of syngas from petroleum coke mixed with coal at a mass ratio of 1:1 shows about $6.7{\sim}7.2MJ/Nm^3$. Although carbon conversion could reach more than 92% according to oxygen amount, cold gas efficiency shows lower value than the case of coal. Therefore, it was shown that complemental study in burner design to atomize slurry droplet is required to elevate gasification performance of petroleum coke which has lower reactivity than coal.

Steam Gasification Characteristics of Oil Sand Coke in a Lab-Scale Fixed Bed Gasifier (실험실 규모의 고정층 가스화기에서 오일샌드 코크스의 수증기 가스화 특성)

  • Yoon, Sang Jun;Choi, Young-Chan;Lee, See-Hoon;Lee, Jae Goo
    • Applied Chemistry for Engineering
    • /
    • v.20 no.1
    • /
    • pp.62-66
    • /
    • 2009
  • Utilization and interest of unconventional fuel and process residue such as oil sand and its residue, oil sand coke, have been increased because of the continuous rise of fuel price and conventional fuel availability. In this study, the gasification of oil sand coke produced from coking process of oil sand was performed to utilize as an energy resource using lab-scale fixed bed gasification system. The combustion characteristics of oil sand bitumen and oil sand coke were investigated by using TGA and lab-scale gasification system was applied to reveal the characteristics of produced syngas composition with oxygen/fuel ratio, temperature and steam injection rate. Oil sand coke shows a high carbon content, heating value and sulfur content and low ash content and reactivity. In case of oil sand coke gasification, generally with increasing temperature, the amount of steam introduced and decreasing oxygen injection rate, $H_2$ content in product gas increased while the $CO_2$ content decreased. The calorific value of syngas shows about $2100kcal/Nm^3$ and this result indicates that the oil sand coke can be used as a resource of hydrogen and fuel.

The developments of heavy hydrocarbon reformer for SOFC

  • Bae, Jung-Myeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.58.2-58.2
    • /
    • 2012
  • Heavy hydrocarbon reforming is a core technology for "Dirty energy smart". Heavy hydrocarbons are components of fossil fuels, biomass, coke oven gas and etc. Heavy hydrocarbon reforming converts the fuels into $H_2$-rich syngas. And then $H_2$-rich syngas is used for the production of electricity, synthetic fuels and petrochemicals. Energy can be used efficiently and obtained from various sources by using $H_2$-rich syngas from heavy hydrocarbon reforming. Especially, the key point of "Dirty energy smart" is using "dirty fuel" which is wasted in an inefficient way. New energy conversion laboratory of KAIST has been researched diesel reforming for solid oxide fuel cell (SOFC) as a part of "Dirty energy smart". Diesel is heavy hydrocarbon fuels which has higher carbon number than natural gas, kerosene and gasoline. Diesel reforming has difficulties due to the evaporation of fuels and coke formation. Nevertheless, diesel reforming technology is directly applied to "Dirty fuel" because diesel has the similar chemical properties with "Dirty fuel". On the other hand, SOFC has advantages on high efficiency and wasted heat recovery. Nippon oil Co. of Japan recently commercializes 700We class SOFC system using city gas. Considering the market situation, the development of diesel reformer has a great ripple effect. SOFC system can be applied to auxiliary power unit and distributed power generation. In addition, "Dirty energy smart" can be realized by applying diesel reforming technology to "Dirty fuel". As well as material developments, multidirectional approaches are required to reform heavy hydrocarbon fuels and use $H_2$-rich gas in SOFC. Gd doped ceria (CGO, $Ce_{1-x}Gd_xO_{2-y}$) has been researched for not only electrolyte materials but also catalysts supports. In addition, catalysts infiltrated electrode over porous $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3-{\delta}$ and catalyst deposition at three phase boundary are being investigated to improve the performance of SOFC. On the other hand, nozzle for diesel atomization and post-reforming for light-hydrocarbons removal are examples of solving material problems in multidirectional approaches. Likewise, multidirectional approaches are necessary to realize "Dirty energy smart" like reforming "Dirty fuel" for SOFC.

  • PDF

Steam Gasification of Coal and Petroleum Coke in a Thermobalance and a Fluidized Bed Reactor (열천칭과 유동층반응기에서 석탄과 Petroleum Coke의 수증기 가스화반응)

  • Ji, Keunho;Song, Byungho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1015-1020
    • /
    • 2012
  • Lignite of low rank coal and petroleum coke of high sulfur content can be high potential energy sources for coal gasification process because of their plentiful supply. The steam gasification of lignite, anthracite, and pet coke has been carried out in both an atmospheric thermobalance reactor and a lab-scale fludized bed reactor (0.02 m i.d. ${\times}$ 0.6 m height). The effects of gasification temperature ($600{\sim}900^{\circ}C$) and partial pressure of steam (0.15~0.95 atm) on the gasification rate and on the heating value of product gas have been investigated. The modified volumetric reaction model was applied to the experimental data to describe the behavior of carbon conversion, and to evaluate kinetic parameters of char gasification. The results shows that higher temperature bring more hydrogen in the product syngas, and thus increased gas heating value. The feed rate of steam is needed to be optimized because an excess steam input would lower the gasification temperature which results in a degradation of fuel quality. The rank of calorific value of the product gas was anthracite > lignite > pet coke. Their obtained calorific value at $900^{\circ}C$ with 95% steam feed were 10.0 > 6.9 > 5.7 $MJ/m^3$. This study indicates that lignite and pet coke has a potential in fuel gas production.

A Effect of Reaction Conditions on Syngas Yield for the Preparation of Syngas from Landfill Gas (매립지가스(LFG)로부터 합성가스 제조시 반응조건에 따른 수율에 미치는 연구)

  • CHO, WOOKSANG;CHOI, KEONGDON;BAEK, YOUNGSOON
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.5
    • /
    • pp.477-483
    • /
    • 2015
  • LFG (Land-Fill Gas) includes components of $CH_4$, $CO_2$, $O_2$, $N_2$, and water. The preparation of synthesis gas from LFG as a DME (Dimethyl Ether) feedstock was studied by methane reforming of $CO_2$, $O_2$ and steam over $NiO-MgO-CeO_2/Al_2O_3$ catalyst. Our experiments were performed to investigate the effects of methane conversion and syngas yield on the amount of LFG components over $NiO-MgO-CeO_2/Al_2O_3$ catalyst. Results were obtained through the methan reforming experiments at the temperature of $900^{\circ}C$ and GHSV of 8,800. The results were as following; it has generally shown that syngas yield increase with the increase of oxygen and steam amounts and then decrease. Highly methane conversion of above 98% and syngas yield of approximately 60% were obtained in the feed of gas composition flow-rate of 243ml/min of $CH_4$, 241ml/min of $CO_2$, 195ml/min of $O_2$, 48ml/min of $N_2$, and 450ml/min of steam, respectively, under reactor pressure of 1 bar for 200 hrs of reaction time. Also, it was shown that catalyst deactivation by coke formation was reduced by excessively adding oxygen and steam as an oxidizer of the methane reforming.

Operation Characteristics of Pilot-scale Acid Gas Removal Process (Pilot 규모 산성가스 제거공정 운전 특성)

  • Lee, Seung-Jong;Yoo, Sang-Oh;Chung, Seok-Woo;Yun, Yong-Seung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.533-536
    • /
    • 2009
  • The gasification technology is a very flexible and versatile technology to produce a wide variety products such as electricity, steam, hydrogen, Fisher-Tropsch(FT) diesels, Dimethyl Ether(DME), methanol and SNG(Synthetic Natural Gas) with near-zero pollutant emissions. Gasification converts coal and other low-grade feedstocks such as biomass, wastes, residual oil, petroleum coke, etc. to a very clean and usable syngas. Syngas is produced from gasifier including CO, $H_2$, $CO_2$, $N_2$, particulates and smaller quantities of $CH_4$, $NH_3$, $H_2S$, COS and etc. After removing pollutants, syngas can be variously used in energy and environment fields. The pilot-scale coal gasification system has been operated since 1994 at Ajou University in Suwon, Korea. The pilot-scale gasification facility consists of the coal gasifier, the hot gas filtering system, and the acid gas removal (AGR) system. The acid gas such as $H_2S$ and COS is removed in the AGR system before generating electricity by gas engine and producing chemicals like Di-methyl Ether(DME) in the catalytic reactor. The designed operation temperature and pressure of the $H_2S$ removal system are below $50^{\circ}C$ and 8 kg/$cm^2$. The iron chelate solution is used as an absorbent. $H_2S$ is removed below 0.1 ppm in the H2S removal system.

  • PDF

Promotion effect of Ce on coke resistance over Ni-based catalyst in combined steam and carbon dioxide reforming of methane (메탄의 수증기-이산화탄소 복합개질 반응에서 니켈 촉매의 탄소침적 저항성에대한 Ce 증진효과)

  • Koo, Kee-Young;Roh, Hyun-Seog;Jung, Un-Ho;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.208-208
    • /
    • 2009
  • 메탄의 수증기-이산화탄소 복합개질반응에서 니켈 촉매의 탄소 침적 저항성에대한 Ce 증진 효과를 살펴보기 위해, Ni-Ce/${\alpha}-Al_2O_3$ 촉매를 제조하였다. Ce/Ni 비율 변화에 따른 촉매 비표면적, Ni 입자 분산도 및 촉매 활성 변화를 살펴보았고, Ce 첨가량을 최적화 할 수 있었다. Ce/Ni 비율 증가에 따라 NiO 결정크기가 감소하고 표면적과 Ni 분산도는 증가하였다. 특히, Ce/Ni=0.5 첨가 시, 촉매는 가장 넓은 비표면적과 Ni 분산도를 가졌으며, 우수한 촉매 활성 및 높은 탄소 침적 저항성을 보였다. 또한, 본 연구에서는 Ni과 Ce 담지 방법에 따른 Ni 분산도 향상과 Ni과 Ce간의 접촉 면적 극대화를 통한 활성산소 공급 향상에 대한 영향을 함께 살펴보았다. Ni과 Ce를 동시 함침법과 연속 함침법으로 담지하여 비교한 결과, 동시 함침법으로 제조한 Ni-Ce/${\alpha}-Al_2O_3$ (Ce/Ni=0.5) 촉매가 가장 우수한 촉매 성능 및 높은 탄소 침적 저항성을 보였다. 이는 동시 함침법으로 고분산된 Ni 입자와 담체간의 강한 상호작용 형성과 원활한 활성 산소 공급에 기인한 것이다.

  • PDF

Operation characteristics of partial oxidation reformer for transportation fuels (수송 연료용 부분산화 개질기의 운전특성)

  • Lee, Sangho;Bae, Joongmyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.159.1-159.1
    • /
    • 2011
  • Partial oxidation reformer was fabricated and operated using commercial transportation fuels. Fuel injector and heating coil were used for fuel atomization and startup, respectively. The reformer was designed to produce syngas for $150{\sim}200W_e$ class solid oxide fuel cell. The reformer was operated in the $O_2$/C range between 0.6 and 0.8 while the capacity was fixed at $150W_e$. The temperature range in catalyst bed was between $500^{\circ}C$ and $900^{\circ}C$. Only 83% fuel was converted to $H_2$, CO, $CO_2$ and $CH_4$ at the operating conditions. The lowest temperature increase to $700^{\circ}C$ when the reformer was operated at $200W_e$, Although the temperature profiles was improved, fuel conversion was 88%. On the other hand, fuel was completely converted when micro-reactor operated at the same condition. This difference maybe due to aromatic compounds formation at homogeneous region. In addition, a significant amount of coke deposition was observed at vent line. Homogeneous reaction depends on the degree of mixing. For this purpose, two fluid nozzle and Ultra sonic injector were compared to investigate the effect of atomization. Sauter mean diameter(SMD) of Ultra sonic injector was lower than two-fluid nozzle at test condition. However, conversion efficiency and fuel conversion were not improved by using two-fluid nozzle. these results imply that the temperature of homogeneous reaction region should be controlled to prevent coke formation.

  • PDF