• Title/Summary/Keyword: coir substrates

Search Result 35, Processing Time 0.024 seconds

Effects of Coir Substrate Application and Substrate Volume on the Growth and Yields of Strawberry in a Hydroponically Cultured System (딸기 수경재배에 코이어 배지 적용과 근권부 배지 용량이 생육 및 수확량에 미치는 영향)

  • Hwang, Jeongsu;Yun, Sungwook;Kwon, Jinkyung;Park, Minjung;Lee, Dongsoo;Lee, Heeju;Lee, Siyoung;Lee, Sanggyu;Hong, Youngsin
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.163-169
    • /
    • 2022
  • This study was conducted to examine an alternative cultivating method that uses coir substrates in a hydroponically cultured system. Three treatment conditions were applied with one-layer substrate (10 cm height) with a coir chip and dust ratio of 5:5 (Treatment A), two-layer coir substrate (20 cm height) with a coir chip and dust ratio of 5:5 (Treatment B), one-layer coir substrate (15 cm height) with a coir chip and dust ratio of 7:3 (Treatment C). The control condition was a plastic container filled with a coir chip and dust ratio of 5:5. Various criteria were measured and compared between the treatments and the control. The yield of strawberry was smaller in the control than in the treatments. No significant difference in growth characteristic was found in the height treatments of the coir substrates. The net photosynthetic rate of the treatments was 14.68-15.76 µmol CO2·m-2·s-1. This does not show a statistically significant difference. The root activity was better in treatment B and C than in treatment A and the control. The length and width of leaves were measured as 4.04-4.13 cm and 3.26-3.34 cm. These results are not statistically significant. The leaf length and width ratio was 1.27 in the control and 1.24 in the treatments. The findings show that no statistically significant benefit was found when utilizing coir substrates with different height treatments in the hydroponic culture system. However, the harvested fruit per plant weights 72.38 g in treatment A and 48.69 g in treatment C. The number of harvested fruit was least in treatment C in which a coir chip and dust ratio of 7:3 was applied. Therefore, further research is needed to examine how the chip and dust ratio in coir substrate affects growth characteristics.

Influence of Physico.Chemical Properties of Root Substrates on the Growth of Mother Plants and the Occurrence of Daughter Plants during the Propagation of 'Maehyang' Strawberry Using a Bag Culture System ('매향' 딸기 번식을 위한 플라스틱 백 재배시 상토 물리.화학성이 모주생육과 자묘 발생에 미치는 영향)

  • Choi, Jong-Myung;Park, Ji-Young;Ko, Kwan-Dal;Lee, Chi-Won W.
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.2
    • /
    • pp.191-197
    • /
    • 2010
  • The objective of this research was to determine the influence of the physical and chemical properties of root substrates used during the production of 'Maehyang' strawberry propaguleson the growth of the mother plants and the rate of daughter plant formation. Plants were cultured in plastic bags containing six different formulations of root substrates composed of: a) 50% coir dust and 50% perlite (5:5 by volume, A), b) 60% coir dust and 40% perlite (6:4, B), c) 70% coir dust and 30% perlite (7:3, C), d) 70% coir dust and 30% coconut chip (7:3 D), e) 60% coir dust and 40% coconut chip (60:40, E), or f) 50% sphagnum peat and 50% vermiculite (50:50, F). All media formulations contained a moderate level of base fertilizers. Physical and chemical properties of each formulation were determined before plant establishment and after 120 days of stock plant culture and runner production. Total porosity (TP) and container capacity (CC) of all substrate formulations were higher than 85% and 55%, respectively, allowing a suitable range of air and water holding characteristics. Formulation F provided the highest TP and CC values among the all substrate modifications evaluated. Substrate formulations A, B, C and F had higher electrical conductivity (EC) and $NO_3{^-}$-N concentrations than formulations D and E, when determined before and after plant culture. Formulations A, B, C, and F, having higher EC readings, also performed better as root substrates thanthe formulations D and E in increasing fresh and dry weights of the runners as well as the production of daughter plants per plant. The 'Maehyang' strawberry plants grown in the formulation F had the highest tissue N content, followed by those grown in substrate B, A, C, or D for 120 days after transplanting. Formulation F also facilitated accumulation of higher tissue phosphorus (P) and copper (Cu) contents compared to other treatments. Results of this experiment suggest that the chemical properties, rather than physical properties, of root substrates had a major influence on the growth of mother plants and the occurrence of healthy daughter plants during the bag-culture phase of propagation.

Changes in soil physical properties of coir dust-mixed substrate as influenced by various filling amounts (용기내 충전량 변화에 따른 코이어 더스트 혼합상토의 물리성 변화)

  • Choi, Jong Myung;Lee, Hee Su
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.3
    • /
    • pp.203-208
    • /
    • 2013
  • Differences in the filling amount of substrates in container can influence severely on the soil physical properties and crop growth. This research was conducted to secure the fundamental informations related to the changes in soil physical properties as influenced by the filling amount of coir dust-based substrates in container. For the experiment, three substrates were formulated by blending coir dust (CD) with expanded rice hull (CD+ERH, 8:2, v/v), carbonized rice hull (CD+CRH, 6:4, v/v) or ground and aged pine bark (CD+GAPB, 8:2, v/v). Based on the optimum bulk density, the amount of substrates filled in 347.5mL aluminum cylinder were adjusted to 90, 100, 110, 120, and 130%. Then the changes in total porosity (TP), container capacity (CC), and air-filled porosity (AFP) by various filling amounts were measured. The TP decreased linearly in CD+ERH and CD+GAPB and quadratically in CD+CRH as the filling amounts of the media increased from 90% to 130%. The CC in CD+ERH and CD+GAPB media increased as the filling amount increased from 90% to 120%, then decreased in 130%, showing quadratic change. The CC in CD+CRH was the highest in 90% filling amount and decreased gradually as the filling amount of root medea increased. The AFPs in CD+ERH and CD+GAPB media were 38 and 37%, respectively in 90% filling amount and they decreased drastically until 110% filling, then gradually in 120 and 130% filling amount showing the quadratic changes. The AFP of CD+CRH at 90% filling amount was 22% and it decreased as the filling amount increased until 130%, showing linear change. These results indicate that the increase in filling amount of substrates influenced more severely the AFP than CC, and careful consideration on container filling is required to provide a better root condition thus maximize crop growth.

Effect of Planting Date and Substrate on the Growth and Flowering of Hydroponically-grown Carnation (정식시기와 배지의 종류가 양액재배 카네이션의 생장과 개화에 미치는 영향)

  • 강종구;이범선;정순주
    • Journal of Bio-Environment Control
    • /
    • v.7 no.2
    • /
    • pp.116-122
    • /
    • 1998
  • This study was conducted to investigate growth and flowering of hydroponically-grown carnation as affected by substrate and planting date, Three substrates, coir, perlite, and coir+perlite(1:1. v/v), and two planting dates. May 1 and September 1 were used. Plant height and stem diameter at harvesting time of cut flowers were greater for the September 1 planting than for the May 1 planting. The plants planted on May 1 produced flowers with weak stems and short stem lengths. In addition, flower weight and blossom width were gloater for the September 1 planting than for the Mar 1 planting. The planting date had no significant effect on the number of petals, The carnation planted on May 1 flowered 50 days earlier compared to those Planted on September 1. Plant height and number of petals were the greatest in the plot of coir substrate. The results indicated that for commercial production of cut carnations in a hydroponic system, planting on September 1 is better than May 1. In addition. the results confirm that coir is the superior substrate for the production of cut carnations in a hydroponic system compared to either Perlite or coir+perlite mixture.

  • PDF

Effect of Coir Substrate Mixing Ratios on the Growth and Yield of Perilla Leaves under Hydroponics (수경재배 잎들깨의 생육과 수량에 미치는 코이어 배지의 혼합비율 효과)

  • Pyeong-Sic Park;Jong-Won Park;Hye-Kyeong Hyeon;Hyun-Sook Kim;Soo-Sang Hahm;Hak-Hun Kim;Hyo-Gil Choi
    • Journal of Environmental Science International
    • /
    • v.33 no.1
    • /
    • pp.17-25
    • /
    • 2024
  • This study aimed to determine the most suitable coir substrate mixing ratio for optimizing the growth and yield of the "lpduelkkae 1" cultivar. We comprehensively analyzed the physicochemical properties, growth, and yields of four different substrate combinations: perlite (coir with mixing ratios of 70:30 (PC30), 50:50 (PC50), and 30:70 (PC70)) and 100% coir (C100). The results revealed substantial differences in substrate properties. C100 exhibited the highest total porosity and the lowest solid phase, indicating excellent air permeability. The pH levels and electrical conductivity (EC) values ranged from 5.4-6.8 and 1.2-3.1 dS·m-1, respectively. Leaf growth parameters, including length, width, and dry weight, showed positive correlations with high coir ratios, except for PC30. PC70 and C100 outperformed other substrates in stem growth, exhibiting superior stem diameter and fresh and dry weights. The quantity of marketable leaves was the highest in the C100 substrate. Furthermore, C100 comprised integrated levels of essential nutrients, such as Ca and Mg, owing to its high coir content. In conclusion, a coir ratio of approximately 70% (v/v) should be maintained in the substrate for creating an optimal cultivation environment. Furthermore, the selection of humidity-resistant varieties as well as precise nutrient and moisture management for different seasons and growth stages are crucial for a successful perilla leaf hydroponic cultivation.

Measuring Water Content Characteristics by Using Frequency Domain Reflectometry Sensor in Coconut Coir Substrate (FDR(Frequency Domain Reflectometry)센서를 이용한 코코넛 코이어 배지내 수분특성 측정)

  • Park, Sung Tae;Jung, Geum Hyang;Yoo, Hyung Joo;Choi, Eun-Young;Choi, Ki-Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.158-166
    • /
    • 2014
  • This experiment has investigated suitable methods to improve precision water content monitoring of coconut coir substrates to control irrigation by frequency domain reflectometry(FDR) sensors. Specifically, water content changes and variations were observed at different sensing distances and positions from the irrigation dripper location, and different spaces between the FDR sensors with or without noise filters. Commercial coconut coir substrates containing different ratios of dust and chips(10:0, 7:3, 5:5, 3:7) were used. On the upper side and the side of the substrates, a FDR sensor was used at 5, 10, 20, 30cm distances respectively from the irrigation dripper point, and water content was measured by time after the irrigation. In the glass beads, sensors were installed with or without noise filtering. Closer sensing distance had a higher water content increasing rate, regardless of different coir substrate ratios. There were no differencies of water content increasing rates in 10:0 and 3:7 substrates between the upper side and the side. Whereas, 7:3 and 5:5 substrates showed higher increasing rates on the upper side measurements. Substrates with higher ratios of chip(3:7) had lower increasing rates than others. And, with noise filters, the exatitude of measurement was improved because the variation and deviation were reduced. Therefore, in coconut coir with FDR sensors, an efficient water content measurment to control irrigations can be achieved by installing sensors closer to an irrigation point and upper side of substrates with noise filters.

The Selection Proper Materials to Develop Specialized Root Substrate for Working with Bulb Onion Transplanter (양파 정식기용 전용 상토에 적합한 상토 재료 선발)

  • Min, Byeonggyu;ha, Injong;Lee, Jongtae;Choi, Silim;Lee, Sangdae
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.100-105
    • /
    • 2016
  • In this study we investigated the suitability of horticultural main organic root substrate materials (peatmoss, coir) for the development proper root substrate for working with bulb onion transplanter. We investigated seedling sprout ratio, growth and characteristics (bulk density, root substrate cohesion) those are suitable for mechanical transplanting by mixing with inorganic materials(red clay etc.). Although both seedling growth and root substrate bulk density were similar in peatmoss and coir based root substrates, we found that peatmoss mixing had higher root substrate cohesion compared to coir mixing. We assume that higher cohesion properties of peatmoss based root substrate will give more weight of root part during mechanical transplanting of young onion seedlings in the field. Because of this, we suggest that peatmoss is the appropriate ingredient for developing root substrates for working with bulb onion transplanter.

Growth Characteristics of Hydroponically Grown Melon according to Volume of Granular Rockwool and Substrates of Coir and Rockwool (입상 암면 용량과 코이어 및 암면 배지 종류에 따른 수경재배 멜론의 생육 특성)

  • Dae Ho Jung;Su Hwan Oh;Da Mi Kim;Su Oh Lee;Chul Hee Cho;Hye Won Cho;Chul Kyoo Ha;Hyun-Ah Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.72-80
    • /
    • 2023
  • Melons, a rich source of vitamins and fibers, are commonly grown in the soil. Hydroponic cultivation could improve yield and quality of melon and selection of substrate volume and the kind of substrates is important for hydroponic cultivation of melons. This study investigated the effect on melon growth according to volume of granular rockwool and substrates of coir and rockwool slab. 'Geumsegye' melon (Cucumis melo L. cv. Geumsegye) was cultivated hydroponically according to volume of granular rockwool to 1.0, 1.5, 2.0, 3.0, and 4.0 L, and was also cultivated using coir and rockwool slabs. Logistic model was applied to estimate the growth characteristics of melons such as plant height, leaf length, leaf width, and the characteristics of fruit. The growth characteristics of melons were significantly increased at 4.0 L compared to those grown of 1.0 L volume of on granular rockwool, and the results were the highest in coir and rockwool slabs. Melons grown in rockwool slabs showed the largest fruit fresh weight, fruit length, and fruit width. During hydroponic cultivation, growth characteristics of melon appropriate at the 4.0 L volume of granular rockwool, and the highest at coir and rockwool slabs. This study provides a basis for understanding the effect of root zone environment to the growth characteristics and fruit quality of non-netted melon.

Growth Characteristics and Yields According to EC Concentrations and Substrates in Paprika (파프리카 수경재배 시 EC 농도와 배지에 따른 생육 및 수량 특성)

  • Hong, Youngsin;Lee, Jaesu;Baek, Jeonghyun;Lee, Sanggyu;Chung, Sunok
    • Journal of Environmental Science International
    • /
    • v.30 no.8
    • /
    • pp.605-612
    • /
    • 2021
  • Supply electrical conductivity (EC) concentration of the nutrition solution is an important factor in the absorption of nutrients by plants and the management of the root zone, as it can control the vegetative/reproductive growth of a plant. Paprika usually undergoes its reproductive and vegetative growth simultaneously. Therefore, ensuring proper growth of the plant leads to increased yield of paprika. In this study, growth characteristics of paprika were examined according to the EC concentration of a coir and a rockwool substrate. The supply EC was 1.0, 2.0, and 4.0 mS·cm-1 applied at the initial stages of the growth using the rockwool (commonly used by paprika farmers) and the coir substrate with a chip and dust ratio of 50:50 and 70:30. For up to 16 weeks of paprika growth, EC concentrations of 1.0 and 2.0 mS·cm-1 were found to have a greater effect on the growth than EC at 4.0 mS·cm-1. The normality (marketable) rate of fruit, the soluble solid content, and paprika growth showed that the coir was generally better than the rockwool regardless of the supply EC concentration. The values of the yield per plant at an EC concentration of 4.0 mS·cm-1 was mostly similar at 1.6 kg (coir 50:50), 1.5 kg (coir 70:30) and 1.5 kg (rockwool), but the yield of the rockwool was 88%, which was lower than 98% and 94% yield of the coir substrate. Therefore, this concludes that coir substrate is more effective than rockwool at improving paprika productivity. The results also suggest that the use of coir substrate for paprika has many benefits in terms of reducing production costs and preventing environmental destruction during post-processing.

Effects of Environmental Substrate Composition on the Growth and Yield of Hydroponically Grown Tomato (토마토 양액재배시 배지 환경조성이 생육 및 생산성에 미치는 영향)

  • Lee, Jaesu;Lee, Hyundong;Lee, Sanggyu;Kwak, Kangsu;Kim, Balgeum;Kim, Taehyun;Baek, Jeonghyun;Rho, Siyoung;Hong, Youngsin
    • Journal of Environmental Science International
    • /
    • v.28 no.9
    • /
    • pp.729-735
    • /
    • 2019
  • The aim of this study was to determine the effects of different compositions of environmental substrates on hydroponic tomato cultivation. Three different substrates were used in coir chip:dust (v/v=50:50; CP1), coir chip:dust (v/v=80:20; CP2), and rock wool cube with CP2 (CPR). The amount of irrigation during the cultivation period was 190 mL/(plant time) in all substrates. The pH and EC were 5.8-6.2 and 2.6-2.9 dS/m, respectively. The drainage rate in CP1 was 31%, in CP2 was 36%, and in CPR was 29%. The growth of tomato plants in terms of height was higher in CP1 and CPR. The leaf area was greater in CP2. The fresh and dry weights were greater in CP2 and CPR treatments. The net photosynthesis in CP2 ($19.31{\mu}mol\;CO_2/m^2s$) and root activity in CP2 were higher among all three treatments. The soluble solid content of fruit was not significantly different among treatments. The yield per plant in CP2 and CPR treatments was 17% greater than the yield per plant in CP1. Therefore, the most suitable substrate for hydroponic tomato cultivation is the substrate mixed with coir chip:dust (v:v=80:20; CP2), i.e., CPR.