• Title/Summary/Keyword: coherency volume

Search Result 12, Processing Time 0.021 seconds

Efficient Buffer Coherency Management for a Shared-Disk based Multiple-Server DBMS (공유 디스크 기반의 다중 서버 DBMS를 위한 효율적인 버퍼 일관성 관리)

  • Ko, Hyun-Sun;Kim, Yi-Reun;Lee, Min-Jae;Whang, Kyu-Young
    • Journal of KIISE:Databases
    • /
    • v.36 no.5
    • /
    • pp.399-404
    • /
    • 2009
  • In a multiple-server DBMS using the share-disk model, when a server process updates data, the updated ones are not immediately reflected to the buffers of the other server processes. Thus, the other server processes may read invalid data. In this paper, we propose a novel method to solve this problem. In this method the server process stores the identifiers and timestamps of the pages that have been updated during a transaction into the coherency volume when the transaction commits. Then, the server process invalidates its buffers of the pages updated by the other server processes by accessing the coherency volume when the lock is acquired, and, subsequently, read the up-to-date versions of the pages from disk. This method needs only a very small coherency volume and shows a good performance because the amount of data that need to be accessed is very small.

Phase Identification of Nano-Phase Materials using Convergent Beam Electron Diffraction (CBED) Technique

  • Kim, Gyeung-Ho;Ahn, Jae-Pyoung
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.47-56
    • /
    • 2006
  • Improvements are made to existing primitive cell volume measurement method to provide a real-time analysis capability for the phase analysis of nanocrystalline materials. Simplification is introduced in the primitive cell volume calculation leading to fast and reliable method for nano-phase identification and is applied to the phase analysis of Mo-Si-N nanocoating layer. In addition, comparison is made between real-time and film measurements for their accuracy of calculated primitive cell volume values and factors governing the accuracy of the method are determined. About 5% accuracy in primitive cell determination is obtained from camera length calibration and this technique is used to investigate the cell volume variation in WC-TiC core-shell microstructure. In addition to chemical compositional variation in core-shell type structure, primitive cell volume variation reveals additional information on lattice coherency strain across the interface.

A Hybrid Shadow Testing Scheme During Ray Tracing (광선추적 수행중 혼합 음영검사에 관한 연구)

  • Eo, Kil-Su;Kyung, Chong-Min
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.3
    • /
    • pp.95-104
    • /
    • 1989
  • This paper presents a new shadow testing acceleration scheme for ray tracing called Hybrid Shadow Testing (HST) based on a conditional switching between the conventinal shadow testing method and Crow's shadow volume method, where the shadow polygons as well as the object polygons are registered onto the corresponding cells under the 3-D space subdivision environment. Despite the preprocessing time for the generation and registration of the shadow polygons, the total shadow testing time of the proposed algorithm, HST was approximately 50% of that of the conventional shadow testing method for several examples while the total ray tracing time was typically reduced by 30% from the conventional approach. This due to the selective use of the shadow volume method with a compromise between the maximal utilisation of shadow's spatial coherency and minimising the computational overhead for checking ray intersections with the shadow polygons. A parameter, $N_{th}$ denoting the critical number of shadow polygons between successive reflection points was used as a guideline for switching the shadow testing scheme between the conventional method and shadow volume method. A method for calculating $N_{th}$ from such statistical data as the number of object polygons, average polygon size average peripheral length of the polygons was proposed, resulting in good agreement with the experimental results.

  • PDF

Template-Based Object-Order Volume Rendering with Perspective Projection (원형기반 객체순서의 원근 투영 볼륨 렌더링)

  • Koo, Yun-Mo;Lee, Cheol-Hi;Shin, Yeong-Gil
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.7
    • /
    • pp.619-628
    • /
    • 2000
  • Abstract Perspective views provide a powerful depth cue and thus aid the interpretation of complicated images. The main drawback of current perspective volume rendering is the long execution time. In this paper, we present an efficient perspective volume rendering algorithm based on coherency between rays. Two sets of templates are built for the rays cast from horizontal and vertical scanlines in the intermediate image which is parallel to one of volume faces. Each sample along a ray is calculated by interpolating neighboring voxels with the pre-computed weights in the templates. We also solve the problem of uneven sampling rate due to perspective ray divergence by building more templates for the regions far away from a viewpoint. Since our algorithm operates in object-order, it can avoid redundant access to each voxel and exploit spatial data coherency by using run-length encoded volume. Experimental results show that the use of templates and the object-order processing with run-length encoded volume provide speedups, compared to the other approaches. Additionally, the image quality of our algorithm improves by solving uneven sampling rate due to perspective ray di vergence.

  • PDF

Memory Efficient Parallel Ray Casting Algorithm for Unstructured Grid Volume Rendering on Multi-core CPUs (비정렬 격자 볼륨 렌더링을 위한 다중코어 CPU기반 메모리 효율적 광선 투사 병렬 알고리즘)

  • Kim, Duksu
    • Journal of KIISE
    • /
    • v.43 no.3
    • /
    • pp.304-313
    • /
    • 2016
  • We present a novel memory-efficient parallel ray casting algorithm for unstructured grid volume rendering on multi-core CPUs. Our method is based on the Bunyk ray casting algorithm. To solve the high memory overhead problem of the Bunyk algorithm, we allocate a fixed size local buffer for each thread and the local buffers contain information of recently visited faces. The stored information is used by other rays or replaced by other face's information. To improve the utilization of local buffers, we propose an image-plane based ray grouping algorithm that makes ray groups have high coherency. The ray groups are then distributed to computing threads and each thread processes the given groups independently. We also propose a novel hash function that uses the index of faces as keys for calculating the buffer index each face will use to store the information. To see the benefits of our method, we applied it to three unstructured grid datasets with different sizes and measured the performance. We found that our method requires just 6% of the memory space compared with the Bunyk algorithm for storing face information. Also it shows compatible performance with the Bunyk algorithm even though it uses less memory. In addition, our method achieves up to 22% higher performance for a large-scale unstructured grid dataset with less memory than Bunyk algorithm. These results show the robustness and efficiency of our method and it demonstrates that our method is suitable to volume rendering for a large-scale unstructured grid dataset.

A New Hybrid Volume PTV (하이브리드 볼륨 PTV(VPTV))

  • Doh, D.H.;Jo, H.J.;Cho, K.R.;Moon, K.R.;Lee, J.M.;Hwang, T.G.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2444-2447
    • /
    • 2008
  • A new 3D-PTV algorithm (a Volume PTV) based upon a hybrid fitness function has been constructed. A coherency fitness function is introduced using the information of space and time to sort out the correct particle pairs between the two camera images. The measurement system consists of two-high-definition-cameras($1k{\times}1k$), a Nd-Yag laser and a host computer. The developed algorithm has been employed to investigate the flow features of the cylinder wake. The Reynolds numbers with the cylinder diameter (d=10mm) are 360, 720, 900 and 1260. Two-dimensional displacements of the particles of each camera's image and neighbouring constraints were introduced to reduce the calculation loads. More than 10,000 instantaneous 3D vectors have been obtained by the constructed algorithm. The constructed algorithm could recover more than $80{\sim}90%$ of the particle numbers in the image.

  • PDF

Accurate and efficient GPU ray-casting algorithm for volume rendering of unstructured grid data

  • Gu, Gibeom;Kim, Duksu
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.608-618
    • /
    • 2020
  • We present a novel GPU-based ray-casting algorithm for volume rendering of unstructured grid data. Our volume rendering system uses a ray-casting method that guarantees accurate rendering results. We also employ the per-pixel intersection list concept in the Bunyk algorithm to guarantee an accurate result for non-convex meshes. For efficient memory access for the lists on the GPU, we represent the intersection lists for all faces as an array with our novel construction algorithm. With the intersection lists, we perform ray-casting on a GPU, and a GPU thread handles each ray. To increase ray-coherency in a thread block and improve memory access efficiency, we extend a prior image-tile-based work distribution method to fit modern GPU architectures. We also show that a prior approach using a per-thread local buffer to reduce redundant computation is not appropriate for modern GPU architectures. Instead, we take an on-demand calculation strategy that achieves better performance even though it allows duplicate computations. We applied our method to three unstructured grid datasets with different characteristics. With a GPU, our method achieved up to 36.5 times higher performance for the ray-casting process and 19.7 times higher performance for the whole volume rendering process compared with the Bunyk algorithm using a CPU core. Also, our approach showed up to 8.2 times higher performance than a GPU-based cell projection method while generating more accurate rendering results. These results demonstrate the efficiency and accuracy of our method.

Measurement of Turbulent Intensity Distributions of a Cylinder Wake

  • Doh, Deog Hee;Cho, Gyeong Rae;Moon, Kyeong Rok;Cho, Yong Beom
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.1
    • /
    • pp.41-47
    • /
    • 2013
  • Turbulence properties of a cylinder wake (d=10 mm) have been investigated with a new volume PTV algorithm. The measurement system consists of two-high-cameras(1 $k{\times}1$ k), a Nd-Yag laser and a host computer. A fitness function representing three-dimensional coherency has been adopted to sort out spurious vectors. A hybrid fitness function representing the relations between the fitness and the three-dimensional shortest distances constructed by the two collinears of the two cameras has been also adopted. The constructed algorithm has been employed for the measurements of the cylinder wakes. The Reynolds numbers tested in this paper are 360, 540, 720, 900, 1080 and 1260. More than 10,000 instantaneous 3D vectors have been obtained by the constructed system. The volumetric distributions of the turbulence intensities (for u', v', w') indicate that clearly different patterns for all Reynolds numbers and imply that a regular pattern (like a similarity rule) for the turbulent properties exists.

Accelerating Parallel Volume Rendering by RGBA Data Compression (RGBA 데이터 압축을 이용한 병렬 볼륨 렌더링 가속 기법)

  • 김형래;이원종;김정우;박우찬;한탁돈
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10c
    • /
    • pp.310-312
    • /
    • 2002
  • 볼륨 렌더링은 물체의 겉면만이 아니라 내부에 있는 모든 3차원 데이터를 이용해서 렌더링 하는 기법이다. 따라서 기존의 폴리곤 렌더링에선 불가능했던 물체 내부에 대한 표현이 가능하기 때문에 과학, 의료 분야 등 물체 전체에 대한 데이터 처리가 필요한 곳에서 많이 쓰이고 있다. 하지만 이러한 볼륨데이터의 크기는 일반적으로 1024$^3$Bytes 이상이기 때문에 기존의 단일 그래픽 가속기로는 메모리 크기나 연산 능력면에서 처리하기에 한계가 있다. 따라서 본 논문에서는 이런 기가급 볼륨데이터를 처리하기 위한 병렬 볼륨 렌더링 구조를 제시하고, 전송된 부분 이미지 합성을 위한 블렌딩 순서를 결정하는 시점 추적 (point-tracking)기법과 네트웍에 의한 성능저하를 최소화 할 수 있는 ‘프레임간 유사성(frame-to-frame coherency)을 이용한 RGBA데이터 압축기법’을 제안한다.

  • PDF

Measurements of the Cylinder Wake with a Hybrid-Fitness Function based 3D-PTV (적합함수 기반의 3D-PTV에 의한 원주후류 측정 해석)

  • Doh, Deog-Hee;Jo, Hyo-Jae;Baek, Tae-Sil
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.2
    • /
    • pp.3-8
    • /
    • 2008
  • A new 3D-PTV algorithm(a Volume PTV) based upon a hybrid fitness function has been constructed. A coherency fitness function is introduced using the information of space and time to sort out the correct particle pairs between the two camera images. The measurement system consists of two-high-definition-cameras($1k{\times}1k$), a Nd-Yag laser and a host computer. The developed algorithm has been employed to investigate the flow features of the cylinder wake. The Reynolds numbers with the cylinder diameter(d=10 mm) are 360, 540, 720, 900, 1080 and 1260. Two-dimensional displacements of the particles of each camera's image and neighbouring constraints were introduced to reduce the calculation loads. More than 10,000 instantaneous 3D vectors have been obtained by the constructed algorithm. The constructed algorithm could recover more than $80{\sim}90%$ of the particle numbers in the image condition.