• Title/Summary/Keyword: cognitive transmission

Search Result 231, Processing Time 0.022 seconds

Throughput Analysis of Slotted ALOHA in Cognitive Radios (인지무선통신 환경에서 슬롯-알로하 기법의 전송 효율 분석)

  • Wang, Hanho;Woo, Choongchae
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.1
    • /
    • pp.41-44
    • /
    • 2015
  • In cognitive radios, exponentially distributed idle period(EIP) is considered in this paper. In the EIP case, durations of idle periods are be limited and varied by primary traffic arrivals. Accordingly, we first analyze the idle period utilization which can be achieved by the slotted ALOHA in cognitive radio communications. The idle period utilization is a newly defined performance metric to measure the transmission performance of the secondary network as effective time durations utilized for successful secondary transmissions in an idle period. Then, the idle period utilization is maximized through controlling the data transmission time. All technical processes are mathematically analyzed and expressed as closed form solutions.

Novel Channel Allocation Scheme for the Multi-Channel Cognitive wireless Networks (멀티채널 인지라디오 네트워크에서의 채널할당방식)

  • Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1889-1894
    • /
    • 2011
  • Channel allocation is one of the important issues in the multichannel transmission. In the cognitive radio networks, channel allocation scheme should be designed to improve spectrum efficiency without interfering with the transmission of licensed users. In this paper, we propose a spectrum hole prediction based channel allocation scheme. The proposed channel allocation scheme, predicts spectrum hole by using the channel success rate, and limit the transmission of secondary user's data, and it reduces the interference to the primary user. The performance of proposed channel allocation scheme is evaluated by the computer simulation.

Holistic Joint Optimal Cooperative Spectrum Sensing and Transmission Based on Cooperative Communication in Cognitive Radio

  • Zhong, Weizhi;Chen, Kunqi;Liu, Xin;Zhou, Jianjiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1301-1318
    • /
    • 2017
  • In order to utilize the licensed channel of cognitive radio (CR) when the primary user (PU) is detected busy, a benefit-exchange access mode based on cooperative communication is proposed to allow secondary user (SU) to access the busy channel through giving assistance to PU's communication in exchange for some transmission bandwidth. A holistic joint optimization problem is formulated to maximize the total throughput of CR system through jointly optimizing the parameters of cooperative spectrum sensing (CSS), including the local sensing time, the pre-configured sensing decision threshold, the forward power of cooperative communication, and the bandwidth and transmission power allocated to SUs in benefit-exchange access mode and traditional access mode, respectively. To solve this complex problem, a combination of bi-level optimization, interior-point optimization and exhaustive optimization is proposed. Simulation results show that, compared with the tradition throughput maximizing model (TTMM), the proposed holistic joint optimization model (HJOM) can make use of the channel effectively even if PU is busy, and the total throughput of CR obtains a considerable improvement by HJOM.

Implementation of Spectrum Sensing with Video Transmission for Cognitive Radio using USRP with GNU Radio

  • Thien, Huynh Thanh;Vu-Van, Hiep;Koo, Insoo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • In cognitive radio (CR), secondary users (SUs) are able to sense the absence of primary users (PUs) in the spectrum. Then, SUs use this information to opportunistically access the licensed spectrum in the PUs' absence. In this paper, we present an implementation of real-time video transmission with spectrum-sensing between two points using GNU Radio and a National Instruments 2900 Universal Software Radio Peripheral (USRP). In our project, spectrum-sensing is implemented at both transmitter and receiver. The transmitter senses the channel, and if the channel is free, a video signal (which could be a real-time signal from a video file) will be modulated and processed by GNU Radio and transmitted using a USRP. A USRP receiver also senses the channel, but in contrast, if the channel is busy, the signal is demodulated to reproduce the transmitted video signal. This project brings in several challenges, like spectrum-sensing in the devices' environment, and packets getting lost or corrupted over the air.

Resource Allocation based on Hybrid Sharing Mode for Heterogeneous Services of Cognitive Radio OFDM Systems

  • Lei, Qun;Chen, Yueyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.149-168
    • /
    • 2015
  • In cognitive radio networks (CRNs), hybrid overlay and underlay sharing transmission mode is an effective technique for improving the efficiency of radio spectrum. Unlike existing works in the literature, where only one secondary user (SU) uses overlay and underlay modes, the different transmission modes should be allocated to different SUs, according to their different quality of services (QoS), to achieve the maximal efficiency of radio spectrum. However, hybrid sharing mode allocation for heterogeneous services is still a challenge in CRNs. In this paper, we propose a new resource allocation method for hybrid sharing transmission mode of overlay and underlay (HySOU), to achieve more potential resources for SUs to access the spectrum without interfering with the primary users. We formulate the HySOU resource allocation as a mixed-integer programming problem to optimize the total system throughput, satisfying heterogeneous QoS. To decrease the algorithm complexity, we divide the problem into two sub-problems: subchannel allocation and power allocation. Cutset is used to achieve the optimal subchannel allocation, and the optimal power allocation is obtained by Lagrangian dual function decomposition and subgradient algorithm. Simulation results show that the proposed algorithm further improves spectrum utilization with a simultaneous fairness guarantee, and the achieved HySOU diversity gain is a satisfactory improvement.

A Cooperative Transmission Scheme Based on Alamouti Coding for Cognitive Radio Networks Over Frequency Selective Fading Channels (주파수 선택적 페이딩 채널에서 안치 무선 통신을 위한 Alamouti 코딩 기반 협력 전송 기법)

  • Kang, Seung-Goo;Kim, Jun-Hwan;Baek, Jee-Hyeon;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6C
    • /
    • pp.403-411
    • /
    • 2011
  • This paper addresses a cooperative transmission scheme based on Alamouti coding for cognitive radio networks over frequency selective fading channels. In the proposed scheme, the Alamouti coded form at the destination node is constructed through a simple combination of symbols at the source node, instead of the time-reversal operation and the conjugate operation at the relay nodes used in the conventional scheme. Numerical results show that the proposed scheme achieves a higher order cooperative diversity than that of the conventional scheme.

Increasing Throughput in Energy-Based Opportunistic Spectrum Access Energy Harvesting Cognitive Radio Networks

  • Yao, Yuanyuan;Yin, Changchuan;Song, Xiaoshi;Beaulieu, Norman C.
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.340-350
    • /
    • 2016
  • The performance of large-scale cognitive radio (CR) networks with secondary users sustained by opportunistically harvesting radio-frequency (RF) energy from nearby primary transmissions is investigated. Using an advanced RF energy harvester, a secondary user is assumed to be able to collect ambient primary RF energy as long as it lies inside the harvesting zone of an active primary transmitter (PT). A variable power (VP) transmission mode is proposed, and an energy-based opportunistic spectrum access (OSA) strategy is considered, under which a secondary transmitter (ST) is allowed to transmit only if its harvested energy is larger than a predefined transmission threshold and it is outside the guard zones of all active PTs. The transmission probability of the STs is derived. The outage probabilities and the throughputs of the primary and the secondary networks, respectively, are characterized. Compared with prior work, the throughput can be increased by as much as 29%. The energy-based OSA strategy can be generally applied to a non-CR setup, where distributed power beacons (PBs) are deployed to power coexisting wireless signal transmitters (WSTs) in a wireless powered sensor network.

Spectrum Leasing and Cooperative Resource Allocation in Cognitive OFDMA Networks

  • Tao, Meixia;Liu, Yuan
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.102-110
    • /
    • 2013
  • This paper considers a cooperative orthogonal frequency division multiple access (OFDMA)-based cognitive radio network where the primary system leases some of its subchannels to the secondary system for a fraction of time in exchange for the secondary users (SUs) assisting the transmission of primary users (PUs) as relays. Our aim is to determine the cooperation strategies among the primary and secondary systems so as to maximize the sum-rate of SUs while maintaining quality-of-service (QoS) requirements of PUs. We formulate a joint optimization problem of PU transmission mode selection, SU (or relay) selection, subcarrier assignment, power control, and time allocation. By applying dual method, this mixed integer programming problem is decomposed into parallel per-subcarrier subproblems, with each determining the cooperation strategy between one PU and one SU. We show that, on each leased subcarrier, the optimal strategy is to let a SU exclusively act as a relay or transmit for itself. This result is fundamentally different from the conventional spectrum leasing in single-channel systems where a SU must transmit a fraction of time for itself if it helps the PU's transmission. We then propose a subgradient-based algorithm to find the asymptotically optimal solution to the primal problem in polynomial time. Simulation results demonstrate that the proposed algorithm can significantly enhance the network performance.

Optimal cooperative sensing scheme in cognitive radio communication systems (무선인지통신 시스템에서 최적 협업 센싱 방식)

  • Lee, Dong-Jun;Lee, Myeong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.5
    • /
    • pp.429-436
    • /
    • 2008
  • In this paper, we study an optimization which determines the optimal sensing time and the number of cooperative sensing cognitive users for cooperative spectrum sensing scheme in cognitive radio networks. In cooperative spectrum sensing, cognitive users originally in inactive status are activated and take part in spectrum sensing along with transmitting cognitive users resulting in a reduced sensing time. Tradeoff between transmission rate gain and energy consumption due to cooperative sensing is formulated as a mixed integer programming problem which is solved for the optimal values.

  • PDF

Handoff Scheme based on Adaptive Channel Prediction in Cognitive Radio Networks (인지무선네트워크에서 적응적 채널예측에 기반한 핸드오프기법)

  • Lee, Juhyeon;Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2389-2396
    • /
    • 2014
  • Spectrum handoff is the process of exchanging progressing data transmission from the current channel to another idle channel. The essential goal of spectrum handoff in CR(Cognitive Radio) networks is to perform consistent data transmission while sustaining performance of ongoing transmission of secondary users. This handoff procedure can cause additional latency that eventually affects on the performance of CR transmission. Channel prediction method is expected to avoid the disruption to primary users and to reduce the handoff latency. In this paper, adaptive channel prediction is proposed to cope with time-varying channel and an adaptive channel prediction based proactive handoff procedure is designed to enhance data transmission performance.