• Title/Summary/Keyword: cognitive radio ad-hoc networks

Search Result 48, Processing Time 0.022 seconds

A Distributed Medium Access Control Protocol for Cognitive Radio Ad Hoc Networks

  • Joshi, Gyanendra Prasad;Kim, Sung Won;Kim, Changsu;Nam, Seung Yeob
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.331-343
    • /
    • 2015
  • We propose a distributed medium access control protocol for cognitive radio networks to opportunistically utilize multiple channels. Under the proposed protocol, cognitive radio nodes forecast and rank channel availability observing primary users' activities on the channels for a period of time by time series analyzing using smoothing models for seasonal data by Winters' method. The proposed approach protects primary users, mitigates channel access delay, and increases network performance. We analyze the optimal time to sense channels to avoid conflict with the primary users. We simulate and compare the proposed protocol with the existing protocol. The results show that the proposed approach utilizes channels more efficiently.

Clustering-Based Mobile Gateway Management in Integrated CRAHN-Cloud Network

  • Hou, Ling;Wong, Angus K.Y.;Yeung, Alan K.H.;Choy, Steven S.O.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.2960-2976
    • /
    • 2018
  • The limited storage and computing capacity hinder the development of cognitive radio ad hoc networks (CRAHNs). To solve the problem, a new paradigm of cloud-based CRAHN has been proposed, in which a CRAHN will make use of the computation and storage resources of the cloud. This paper envisions an integrated CRAHN-cloud network architecture. In this architecture, some cognitive radio users (CUs) who satisfy the required metrics could perform as mobile gateway candidates to connect other ordinary CUs with the cloud. These mobile gateway candidates are dynamically clustered according to different related metrics. Cluster head and time-to-live value are determined in each cluster. In this paper, the gateway advertisement and discovery issues are first addressed to propose a hybrid gateway discovery mechanism. After that, a QoS-based gateway selection algorithm is proposed for each CU to select the optimal gateway. Simulations are carried out to evaluate the performance of the overall scheme, which incorporates the proposed clustering and gateway selection algorithms. The results show that the proposed scheme can achieve about 11% higher average throughput, 10% lower end-to-end delay, and 8% lower packet drop fractions compared with the existing scheme.

The Asymptotic Throughput and Connectivity of Cognitive Radio Networks with Directional Transmission

  • Wei, Zhiqing;Feng, Zhiyong;Zhang, Qixun;Li, Wei;Gulliver, T. Aaron
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.227-237
    • /
    • 2014
  • Throughput scaling laws for two coexisting ad hoc networks with m primary users (PUs) and n secondary users (SUs) randomly distributed in an unit area have been widely studied. Early work showed that the secondary network performs as well as stand-alone networks, namely, the per-node throughput of the secondary networks is ${\Theta}(1/\sqrt{n{\log}n})$. In this paper, we show that by exploiting directional spectrum opportunities in secondary network, the throughput of secondary network can be improved. If the beamwidth of secondary transmitter (TX)'s main lobe is ${\delta}=o(1/{\log}n)$, SUs can achieve a per-node throughput of ${\Theta}(1/\sqrt{n{\log}n})$ for directional transmission and omni reception (DTOR), which is ${\Theta}({\log}n)$ times higher than the throughput with-out directional transmission. On the contrary, if ${\delta}={\omega}(1/{\log}n)$, the throughput gain of SUs is $2{\pi}/{\delta}$ for DTOR compared with the throughput without directional antennas. Similarly, we have derived the throughput for other cases of directional transmission. The connectivity is another critical metric to evaluate the performance of random ad hoc networks. The relation between the number of SUs n and the number of PUs m is assumed to be $n=m^{\beta}$. We show that with the HDP-VDP routing scheme, which is widely employed in the analysis of throughput scaling laws of ad hoc networks, the connectivity of a single SU can be guaranteed when ${\beta}$ > 1, and the connectivity of a single secondary path can be guaranteed when ${\beta}$ > 2. While circumventing routing can improve the connectivity of cognitive radio ad hoc network, we verify that the connectivity of a single SU as well as a single secondary path can be guaranteed when ${\beta}$ > 1. Thus, to achieve the connectivity of secondary networks, the density of SUs should be (asymptotically) bigger than that of PUs.

An Efficient Routing Protocol Considering Path Reliability in Cognitive Radio Ad-hoc Networks (인지 무선 애드혹 네트워크에서 경로 신뢰성을 고려한 효율적인 라우팅 기법)

  • Choi, Jun-Ho;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.11
    • /
    • pp.730-742
    • /
    • 2014
  • In the case of On-demand routing protocol in cognitive radio ad-hoc networks, broadcasting of control packets may occur common control channel overload and packet collisions during the routing procedure. This situation is to increase the overhead of path finding and also limited to find the accurate and reliable path. Since reliable channel and path finding is restricted, path life time is shorten and path reliability is reduced. In this paper, we propose a new routing algorithm that reduces control channel overhead and increases path life time by considering the probability of appearance of primary user and channel status of neighbor nodes. Each node performs periodic local sensing to detect primary user signal and to derive primary user activity patterns. The probability of primary appearance on the current channel and the channel status can be obtained based on the periodic sensing. In addition, each node identifies the quality of the channel by message exchange through a common channel with neighbor nodes, then determines Link_Levels with neighbor nodes. In the proposed method, the Link Level condition reduces the number of control messages that are generated during the route discovery process. The proposed method can improve path life time by choosing a path through Path_Reliability in which stability and quality are weighted depending on the location. Through simulation, we show that our proposed algorithm reduces packet collisions and increases path life time in comparison with the traditional algorithm.

Dynamic Spectrum Sensing and Channel Access Mechanism in Frequency Hopping Based Cognitive Radio Ad-hoc Networks (주파수 홉핑 기반 인지무선 애드 혹 네트워크에서 동적 스펙트럼 센싱 및 채널 엑세스 방안)

  • Won, Jong-Min;Yoo, Sang-Jo;Seo, Myunghwan;Cho, Hyung-Weon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2305-2315
    • /
    • 2015
  • Frequency resource value is growing more and more with the development of the wireless communication. With the advent of the current information society comes a serious shortage of frequency resource, as the amount of supply is far from meeting its demands. Thus, cognitive radio (CR) technique is receiving more attention as a way to make use of the temporarily unoccupied frequency resource. In this paper we propose a novel out-of-band spectrum sensing and dynamic channel access scheme for frequency hopping-based cognitive radio ad-hoc networks. At the beginning of each current channel hopping time, member nodes perform spectrum sensing for the next hopping channel. Based on the proposed collision free primary detection notification, member nodes can determine whether they should execute a hopping time extension procedure of the current channel or not. When the primary detected hopping channel is re-idled, the hopping pattern recovery procedure is performed. In this paper we evaluated the performance of the proposed dynamic sensing and hopping channel extension mechanism for the various wireless network conditions. As a result, we show that the proposed method can increase channel utilization and provide reliable channel management operation.

An Efficient Multi-Channel MAC Protocol for Cognitive Ad-hoc Networks with Idle Nodes Assistance (무선 인지 애드 혹 네트워크를 위한 휴지 노드를 활용하는 효율적인 다중 채널 MAC 프로토콜)

  • Gautam, Dinesh;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.39-45
    • /
    • 2011
  • In this paper, we propose an efficient multichannel MAC protocol with idle nodes assistance to avoid the multi-channel hidden terminal problem in cognitive radio ad hoc network and further to improve the performance of the network. The proposed MAC protocol can be applied to the cognitive radio adhoc network where every node is equipped with the single transceiver and one common control channel exists for control message negotiation. In the proposed protocol, the idle nodes available in the neighbour of communication nodes are utilized because the idle nodes have the information about the channels being utilized in their transmission range. Whenever the nodes are negotiating for the channel, idle nodes can help the transmitting and receiving nodes to select the free data channel for data transfer. With the proposed scheme, we can minimize the hidden terminal problem and decrease the collision between the secondary users when selecting the channel for data transfer. As a result, the performance of the network is increased.

A Sensing Channel Scheduling Scheme for Improving the Cognition Ability in Cognitive Radio Systems (인지 라디오 시스템에서 주파수 상황인지 능력 향상을 위한 감지 채널 스케줄링 기법)

  • Han, Jeong-Ae;Jeon, Wha-Sook
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.2
    • /
    • pp.130-138
    • /
    • 2008
  • The scheme for recognizing the channel availability is one of the most important research issues in cognitive radio systems utilizing unused frequency bands. In this paper, we propose a novel scheme of selecting sensing channel in order to improve the sensing ability of frequency status in cognitive radio ad hoc networks. To fully exploit the sensing ability of each cognitive radio user, we adopt a master for a cluster which is made of several cognitive radio users. By gathering and analyzing the sensing information from cognitive radio users in the cluster, the cooperative sensing is realized. Since the transmission range of a licensed user is limited, it is possible that a master determines different sensing channels to each cognitive radio users based on their location. By making cognitive radio users sense different channels, the proposed scheme can recognize the state of wireless spectrum fast and precisely. Using the simulation, we compare the performance of the proposed scheme with those of two different compared schemes that one makes cognitive radio users recognize the frequency status based on their own sensing results and the other shares frequency status information but does not utilize the location information of licensed user. Simulation results show that the proposed scheme provides available channels as many as possible while detecting the activation of licensed user immediately.

Wireless Mobile Sensor Networks with Cognitive Radio Based FPGA for Disaster Management

  • Ananthachari, G.A. Preethi
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1097-1114
    • /
    • 2021
  • The primary objective of this work was to discover a solution for the survival of people in an emergency flood. The geographical information was obtained from remote sensing techniques. Through helpline numbers, people who are in need request support. Although, it cannot be ensured that all the people will acquire the facility. A proper link is required to communicate with people who are at risk in affected areas. Mobile sensor networks with field-programmable gate array (FPGA) self-configurable radios were deployed in damaged areas for communication. Ad-hoc networks do not have a centralized structure. All the mobile nodes deploy a temporary structure and they act as a base station. The mobile nodes are involved in searching the spectrum for channel utilization for better communication. FPGA-based techniques ensure seamless communication for the survivors. Timely help will increase the survival rate. The received signal strength is a vital factor for communication. Cognitive radio ensures channel utilization in an effective manner which results in better signal strength reception. Frequency band selection was carried out with the help of the GRA-MADM method. In this study, an analysis of signal strength for different mobile sensor nodes was performed. FPGA-based implementation showed enhanced outcomes compared to software-based algorithms.

Performance Evaluation of MAC Protocols with Application to MANET Routing for Distributed Cognitive Radio Networks (분산 무선 인지 네트워크를 위한 MAC 프로토콜의 MANET 라우팅 적용 성능 분석)

  • Kwon, Sehoon;Kim, Hakwon;Kim, Bosung;Roh, Byeong-Hee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.4
    • /
    • pp.97-106
    • /
    • 2014
  • In this paper, we propose a design method to extend certain cognitive radio (CR) MAC protocols originally proposed only for the one hop applications in distributed CR networks to MANET routing protocols. Among several CR MAC protocols, the opportunistic MAC (called O-MAC) and the opportunistic period MAC (called OP-MAC) are considered, and AODV as MANET routing protocol is used. We implement the protocols using OPNET network simulator, and compare the performances in both MAC and AODV routing environments. With the experiments, we analyze the relationship between MAC and routing performances of the CR protocols.

Multi-channel and Multi-hop transmission scheme for cognitive radio networks (인지무선네트워크에서 멀티채널 멀티홉 전송 기법)

  • Kwon, Youngmin;Park, Hyung-Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.609-610
    • /
    • 2017
  • Cognitive radio communication techniques have been attracting attention to efficiently use the scarce spectrum as the wireless communication service increases. In cognitive radio communication, efforts to minimize interference to the primary user are important technical factors. In a multi-hop wireless ad hoc network, multi-hop transmission requires path and channel selection considering channel interference as well as collision with primary users. In the multi-channel environment, cognitive radio network has different capacities depending on the inter-channel interference and collision with the main users. In this paper, we propose a multi-hop transmission scheme that minimizes inter-channel interference and reduce collision with primary users.

  • PDF