• 제목/요약/키워드: cognitive cooperative network

검색결과 77건 처리시간 0.02초

On Cyclic Delay Diversity with Single Carrier OFDM Based Communication Network

  • A. Sathi Babu;M. Muni Chandrika;P. Sravani;M. Sindhu sowjanyarani;M. Dimpu Krishna
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.95-100
    • /
    • 2024
  • Cyclic Delay Diversity (CDD) is a diversity scheme used in OFDM-based telecommunication systems, transforming spatial diversity into frequency diversity and thus avoiding intersymbol interference without entailing the receiver to be aware of the transmission strategy making the signal more reliable achieving full diversity gain in cooperative systems. Here the analyzation of the influence of CDD-SC scheme in Cognitive Radio Network (CRN) is done with the challenge of overcoming the complication called channel estimation along with overhead in CNR. More specifically, the closed-form expressions for outage probability and symbol error rate are divided under different frequencies among independent and identically distributed (i.i.d.) frequency selective fading channel model i.e., the signal is divided into different frequencies and transmitted among several narrow band channels of different characteristics. It is useful in the reduction of interference and crosstalk. The results reveal the diversity order of the proposed system to be mainly affected by the number of multipath components that are available in the CNR.

애드 혹 네트워크기반 무선인지 시스템에서 스펙트럼 센싱 (Spectrum Sensing Technique in Cognitive Radio Systems Based on Ad-Hoc Networks)

  • 이소영;김은철;차재상;황성호;민준기;김진영
    • 한국ITS학회 논문지
    • /
    • 제8권5호
    • /
    • pp.121-127
    • /
    • 2009
  • 이동 Ad hoc 네트워크 (MANET: Mobile Ad-hoc Network)는 기존의 통신 인프라의 구축 여부와 무관하게 무선 단말기 기간의 통신이 가능한 네트워크이다. Ad hoc 네트워크는 음영지역, 재난지역, 전쟁 시와 같은 통신 인프라가 구축되기 어려운 상황에서 유용하게 사용 될 수 있다. 그러나 음성 및 데이터 서비스 등과 같은 무선 서비스의 제공을 위해 많은 양의 네트워크 용량이 필요하게 되지만 기존의 제한된 주파수 자원에 따른 주파수 부족 상황 및 주파수 자원정책의 규제에 따라 원활한 주파수 사용이 어려운 상황이다. 이에 따라 높은 주파수 활용을 제공하는 무선 인지 시스템이 Ad hoc네트워크에 적용하여 보다 다양하고 확장된 네트워크 서비스를 제공할 수 있다. 본 논문에서는 기존의 단일 스펙트럼 센싱 및 협력 스펙트럼 센싱과 비교하여 Ad hoc 네트워크가 적용된 무선인지 시스템에서의 스펙트럼 센싱의 성능이 향상됨을 모의 실험 및 성능 분석을 통하여 나타내도록 한다.

  • PDF

A Study on the Verification of Traffic Flow and Traffic Accident Cognitive Function for Road Traffic Situation Cognitive System

  • Am-suk, Oh
    • Journal of information and communication convergence engineering
    • /
    • 제20권4호
    • /
    • pp.273-279
    • /
    • 2022
  • Owing to the need to establish a cooperative-intelligent transport system (C-ITS) environment in the transportation sector locally and abroad, various research and development efforts such as high-tech road infrastructure, connection technology between road components, and traffic information systems are currently underway. However, the current central control center-oriented information collection and provision service structure and the insufficient road infrastructure limit the realization of the C-ITS, which requires a diversity of traffic information, real-time data, advanced traffic safety management, and transportation convenience services. In this study, a network construction method based on the existing received signal strength indicator (RSSI) selected as a comparison target, and the experimental target and the proposed intelligent edge network compared and analyzed. The result of the analysis showed that the data transmission rate in the intelligent edge network was 97.48%, the data transmission time was 215 ms, and the recovery time of network failure was 49,983 ms.

Malicious User Suppression Based on Kullback-Leibler Divergence for Cognitive Radio

  • Van, Hiep-Vu;Koo, In-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권6호
    • /
    • pp.1133-1146
    • /
    • 2011
  • Cognitive radio (CR) is considered one of the most promising next-generation communication systems; it has the ability to sense and make use of vacant channels that are unused by licensed users. Reliable detection of the licensed users' signals is an essential element for a CR network. Cooperative spectrum sensing (CSS) is able to offer better sensing performance as compared to individual sensing. The presence of malicious users who falsify sensing data can severely degrade the sensing performance of the CSS scheme. In this paper, we investigate a secure CSS scheme, based on the Kullback-Leibler Divergence (KL-divergence) theory, in order to identify malicious users and mitigate their harmful effect on the sensing performance of CSS in a CR network. The simulation results prove the effectiveness of the proposed scheme.

Joint Beamforming and Power Allocation for Multiple Primary Users and Secondary Users in Cognitive MIMO Systems via Game Theory

  • Zhao, Feng;Zhang, Jiayi;Chen, Hongbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권6호
    • /
    • pp.1379-1397
    • /
    • 2013
  • We consider a system where a licensed radio spectrum is shared by multiple primary users(PUs) and secondary users(SUs). As the spectrum of interest is licensed to primary network, power and channel allocation must be carried out within the cognitive radio network so that no excessive interference is caused to PUs. For this system, we study the joint beamforming and power allocation problem via game theory in this paper. The problem is formulated as a non-cooperative beamforming and power allocation game, subject to the interference constraints of PUs as well as the peak transmission power constraints of SUs. We design a joint beamforming and power allocation algorithm for maximizing the total throughput of SUs, which is implemented by alternating iteration of minimum mean square error based decision feedback beamforming and a best response based iterative power allocation algorithm. Simulation results show that the algorithm has better performance than an existing algorithm and can converge to a locally optimal sum utility.

Artificial Neural Network with Firefly Algorithm-Based Collaborative Spectrum Sensing in Cognitive Radio Networks

  • Velmurugan., S;P. Ezhumalai;E.A. Mary Anita
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권7호
    • /
    • pp.1951-1975
    • /
    • 2023
  • Recent advances in Cognitive Radio Networks (CRN) have elevated them to the status of a critical instrument for overcoming spectrum limits and achieving severe future wireless communication requirements. Collaborative spectrum sensing is presented for efficient channel selection because spectrum sensing is an essential part of CRNs. This study presents an innovative cooperative spectrum sensing (CSS) model that is built on the Firefly Algorithm (FA), as well as machine learning artificial neural networks (ANN). This system makes use of user grouping strategies to improve detection performance dramatically while lowering collaboration costs. Cooperative sensing wasn't used until after cognitive radio users had been correctly identified using energy data samples and an ANN model. Cooperative sensing strategies produce a user base that is either secure, requires less effort, or is faultless. The suggested method's purpose is to choose the best transmission channel. Clustering is utilized by the suggested ANN-FA model to reduce spectrum sensing inaccuracy. The transmission channel that has the highest weight is chosen by employing the method that has been provided for computing channel weight. The proposed ANN-FA model computes channel weight based on three sets of input parameters: PU utilization, CR count, and channel capacity. Using an improved evolutionary algorithm, the key principles of the ANN-FA scheme are optimized to boost the overall efficiency of the CRN channel selection technique. This study proposes the Artificial Neural Network with Firefly Algorithm (ANN-FA) for cognitive radio networks to overcome the obstacles. This proposed work focuses primarily on sensing the optimal secondary user channel and reducing the spectrum handoff delay in wireless networks. Several benchmark functions are utilized We analyze the efficacy of this innovative strategy by evaluating its performance. The performance of ANN-FA is 22.72 percent more robust and effective than that of the other metaheuristic algorithm, according to experimental findings. The proposed ANN-FA model is simulated using the NS2 simulator, The results are evaluated in terms of average interference ratio, spectrum opportunity utilization, three metrics are measured: packet delivery ratio (PDR), end-to-end delay, and end-to-average throughput for a variety of different CRs found in the network.

Spectrum- and Energy- Efficiency Analysis Under Sensing Delay Constraint for Cognitive Unmanned Aerial Vehicle Networks

  • Zhang, Jia;Wu, Jun;Chen, Zehao;Chen, Ze;Gan, Jipeng;He, Jiangtao;Wang, Bangyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권4호
    • /
    • pp.1392-1413
    • /
    • 2022
  • In order to meet the rapid development of the unmanned aerial vehicle (UAV) communication needs, cooperative spectrum sensing (CSS) helps to identify unused spectrum for the primary users (PU). However, multi-UAV mode (MUM) requires the large communication resource in a cognitive UAV network, resulting in a severe decline of spectrum efficiency (SE) and energy efficiency (EE) and increase of energy consumption (EC). On this account, we extend the traditional 2D spectrum space to 3D spectrum space for the UAV network scenario and enable UAVs to proceed with spectrum sensing behaviors in this paper, and propose a novel multi-slot mode (MSM), in which the sensing slot is divided into multiple mini-slots within a UAV. Then, the CSS process is developed into a composite hypothesis testing problem. Furthermore, to improve SE and EE and reduce EC, we use the sequential detection to make a global decision about the PU channel status. Based on this, we also consider a truncation scenario of the sequential detection under the sensing delay constraint, and further derive a closed-form performance expression, in terms of the CSS performance and cooperative efficiency. At last, the simulation results verify that the performance and cooperative efficiency of MSM outperforms that of the traditional MUM in a low EC.

Game-Theoretic Analysis of Selfish Secondary Users in Cognitive Radio Networks

  • Kahsay, Halefom;Jembre, Yalew Zelalem;Choi, Young-June
    • Journal of Communications and Networks
    • /
    • 제17권4호
    • /
    • pp.440-448
    • /
    • 2015
  • In this paper, we study the problem of selfish behavior of secondary users (SUs) based on cognitive radio (CR) with the presence of primary users (PUs). SUs are assumed to contend on a channel using the carrier sense multiple access with collision avoidance (CSMA/CA) and PUs do not consider transmission of SUs, where CSMA/CA protocols rely on the random deference of packets. SUs are vulnerable to selfish attacks by which selfish users could pick short random deference to obtain a larger share of the available bandwidth at the expense of other SUs. In this paper, game theory is used to study the systematic cheating of SUs in the presence of PUs in multichannel CR networks. We study two cases: A single cheater and multiple cheaters acting without any restraint. We identify the Pareto-optimal point of operation of a network with multiple cheaters and also derive the Nash equilibrium of the network. We use cooperative game theory to drive the Pareto optimality of selfish SUs without interfering with the activity of PUs. We show the influence of the activity of PUs in the equilibrium of the whole network.

ENC-MAC: Energy-efficient Non-overlapping Channel MAC for Cognitive Radio enabled Sensor Networks

  • Kim, Bosung;Kim, Kwangsoo;Roh, Byeong-hee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권11호
    • /
    • pp.4367-4386
    • /
    • 2015
  • The concept of Internet of Things (IoT) has shed new light on WSN technologies. MAC protocol issues improving the network performance are important in WSNs because of the increase in demand for various applications to secure spectrum resources. Cognitive radio (CR) technology is regarded as a solution to the problems in this future wireless network. In recent years, energy efficiency has become an issue in CR networks. However, few relevant studies have been conducted. In this paper, an energy-efficient non-overlapping channel MAC (ENC-MAC) for CR-enabled sensor networks (CRSNs) is proposed. Applying the dedicated control channel approach, ENC-MAC allows the SUs to utilize channels in a non-overlapping manner, and thus spectrum efficiency is improved. Moreover, the cooperative spectrum sensing that allows an SU to use only two minislots in the sensing phase is addressed to en-hance energy efficiency. In addition, an analytical model for evaluating the performance, such as saturation throughput, average packet delay, and network lifetime, is developed. It is shown in our results that ENC-MAC remarkably outperforms existing MAC protocols.

Sequential fusion to defend against sensing data falsification attack for cognitive Internet of Things

  • Wu, Jun;Wang, Cong;Yu, Yue;Song, Tiecheng;Hu, Jing
    • ETRI Journal
    • /
    • 제42권6호
    • /
    • pp.976-986
    • /
    • 2020
  • Internet of Things (IoT) is considered the future network to support wireless communications. To realize an IoT network, sufficient spectrum should be allocated for the rapidly increasing IoT devices. Through cognitive radio, unlicensed IoT devices exploit cooperative spectrum sensing (CSS) to opportunistically access a licensed spectrum without causing harmful interference to licensed primary users (PUs), thereby effectively improving the spectrum utilization. However, an open access cognitive IoT allows abnormal IoT devices to undermine the CSS process. Herein, we first establish a hard-combining attack model according to the malicious behavior of falsifying sensing data. Subsequently, we propose a weighted sequential hypothesis test (WSHT) to increase the PU detection accuracy and decrease the sampling number, which comprises the data transmission status-trust evaluation mechanism, sensing data availability, and sequential hypothesis test. Finally, simulation results show that when various attacks are encountered, the requirements of the WSHT are less than those of the conventional WSHT for a better detection performance.