• 제목/요약/키워드: cognate

검색결과 106건 처리시간 0.021초

In-silico Modeling of Chemokine Receptor CCR2 And CCR5 to Assist the Design of Effective and Selective Antagonists

  • Kothandan, Gugan;Cho, Seung Joo
    • 통합자연과학논문집
    • /
    • 제5권1호
    • /
    • pp.32-37
    • /
    • 2012
  • Chemokine receptor antagonists have potential applications in field of drug discovery. Although the chemokine receptors are G-protein-coupled receptors, their cognate ligands are small proteins (8 to 12 kDa), and so inhibiting the ligand/receptor interaction has been challenging. The application of structure-based in-silico methods to drug discovery is still considered a major challenge, especially when the x-ray structure of the target protein is unknown. Such is the case with human CCR2 and CCR5, the most important members of the chemokine receptor family and also a potential drug target. Herein, we review the success stories of combined receptor modeling/mutagenesis approach to probe the allosteric nature of chemokine receptor binding by small molecule antagonists for CCR2 and CCR5 using Rhodopsin as template. We also urged the importance of recently available ${\beta}2$-andrenergic receptor as an alternate template to guide mutagenesis. The results demonstrate the usefulness and robustness of in-silico 3D models. These models could also be useful for the design of novel and potent CCR2 and CCR5 antagonists using structure based drug design.

Comparative Analysis of CCR2 and CCR5 Binding Sites to Facilitate the Development of Dual Antagonists: An in Silico Study

  • Kothandan, Gugan
    • 통합자연과학논문집
    • /
    • 제5권1호
    • /
    • pp.22-26
    • /
    • 2012
  • Chemokine receptor antagonists have potential applications in field of drug discovery. Although the chemokine receptors are G-protein-coupled receptors, their cognate ligands are small proteins (8 to 12 kDa), and so inhibiting the ligand/receptor interaction has been challenging. In particular, CCR2 and CCR5 and their ligands have been implicated in the pathophysiology of a number of diseases, including rheumatoid arthritis and multiple sclerosis. Based on their roles in disease, they have been attractive targets for the pharmaceutical industry, targeting both CCR2 and CCR5 could be a useful strategy. Because of the importance of these receptors, providing information regarding the binding site is of prime importance. Herein, we report the comparison of CCR2 of CCR5 binding sites both sequentially as well as structurally. We also urged the importance of crucial residues in the binding site, to facilitate the development of dual antagonists targeting both the receptors. These results could also be useful for the design of novel and potent dual CCR2 and CCR5 antagonists using structure based drug design.

Light Regulation of rbcL Transcript and Protein-binding Region on rbcL Promoter in Maize

  • Lee, Jae-Seon;Sim, Woong-Seop
    • Journal of Plant Biology
    • /
    • 제39권4호
    • /
    • pp.279-286
    • /
    • 1996
  • To know the changes of rbcL mRNA level by illumination, Northern hybridization analysis was performed with maize (Zea mays L.cv. Golden X Bantam). The average level of rbcL. mRNA in the light-grown shoots was 3.1 times higher than that of the dark-grown shoots after 6 to 10 growth days. The maximum difference of rbcL mRNA level between the dark-grown and the light-grown shoots was 5.1 folds. These results indicate that accumulation of rbcL mRNAin maize shoots is induced by light. Since the transcriptional DNA binding proteins and their cognate promoter elements, we carried out gel-retardation assays to elucidate the specific binding proteins on the rbcL promoter. It was found that plastid proteins of light-grown shoots bound to the R2 DNA fragment (-33 to -229) and R3 DNA fragment (-230 to -418 from ATG) of the rbcL promoter. From the results of competitive binding assays and heat or protease treatments, it was demonstrated that the bindings were sequence-specific DNA-protein interactions. Therefore, it could be concluded that the rbcL promoter region has at least two specific recognition sites for plastid proteins.

  • PDF

Segmented Filamentous Bacteria Induce Divergent Populations of Antigen-Specific CD4 T Cells in the Small Intestine

  • Yi, Jaeu;Jung, Jisun;Han, Daehee;Surh, Charles D.;Lee, You Jeong
    • Molecules and Cells
    • /
    • 제42권3호
    • /
    • pp.228-236
    • /
    • 2019
  • CD4 T cells differentiate into $ROR{\gamma}t/IL$-17A-expressing cells in the small intestine following colonization by segmented filamentous bacteria (SFB). However, it remains unclear whether SFB-specific CD4 T cells can differentiate directly from naïve precursors, and whether their effector differentiation is solely directed towards the Th17 lineage. In this study, we used adoptive T cell transfer experiments and showed that naïve CD4 T cells can migrate to the small intestinal lamina propria (sLP) and differentiate into effector T cells that synthesize IL-17A in response to SFB colonization. Using single cell RT-PCR analysis, we showed that the progenies of SFB responding T cells are not uniform but composed of transcriptionally divergent populations including Th1, Th17 and follicular helper T cells. We further confirmed this finding using in vitro culture of SFB specific intestinal CD4 T cells in the presence of cognate antigens, which also generated heterogeneous population with similar features. Collectively, these findings indicate that a single species of intestinal bacteria can generate a divergent population of antigen-specific effector CD4 T cells, rather than it provides a cytokine milieu for the development of a particular effector T cell subset.

Hitting the complexity of the TIGIT-CD96-CD112R-CD226 axis for next-generation cancer immunotherapy

  • Jin, Hyung-seung;Park, Yoon
    • BMB Reports
    • /
    • 제54권1호
    • /
    • pp.2-11
    • /
    • 2021
  • Antibody-based therapeutics targeting the inhibitory receptors PD-1, PD-L1, or CTLA-4 have shown remarkable clinical progress on several cancers. However, most patients do not benefit from these therapies. Thus, many efforts are being made to identify new immune checkpoint receptor-ligand pathways that are alternative targets for cancer immunotherapies. Nectin and nectin-like molecules are widely expressed on several types of tumor cells and play regulatory roles in T- and NK-cell functions. TIGIT, CD226, CD96 and CD112R on lymphoid cells are a group of immunoglobulin superfamily receptors that interact with Nectin and nectin-like molecules with different affinities. These receptors transmit activating or inhibitory signals upon binding their cognate ligands to the immune cells. The integrated signals formed by their complex interactions contribute to regulating immune-cell functions. Several clinical trials are currently evaluating the efficacy of anti-TIGIT and anti-CD112R blockades for treating patients with solid tumors. However, many questions still need to be answered in order to fully understand the dynamics and functions of these receptor networks. This review addresses the rationale behind targeting TIGIT, CD226, CD96, and CD112R to regulate T- and NK-cell functions and discusses their potential application in cancer immunotherapy.

Expression of Maturation-Related Genes and Leptin during Sexual Maturation in the Female Goldfish: Effects of Exogenous Kisspeptin

  • Kim, Na Na;Choi, Young Jae;Oh, Sung-Yong;Choi, Cheol Young
    • 한국해양생명과학회지
    • /
    • 제1권1호
    • /
    • pp.41-49
    • /
    • 2016
  • Kisspeptin (Kiss) and its cognate receptor, kisspeptin receptor (KissR; G protein coupled receptor 54, GPR54), have recently been recognized as potent regulators of reproduction in teleosts. Additionally, leptin plays an important role in energy homeostasis and reproductive function in teleosts. The purpose of this study was to examine differences in the concentration of the hormones of the Kiss/KissR system and leptin and the expression of their underlying genes, all of which are involved in the sexual maturation of female goldfish, Carassius auratus, following treatment with Kiss. The expression levels of KissR increased after the Kiss injection. Furthermore, the peptide hormone leptin also increased after the injection (in vivo and in vitro). Additionally, the expression of GnRH and GTHs (GTHα, FSHβ, and LHβ) increased in the brain and pituitary (in vitro and in vitro). These results support the hypothesis that Kiss plays important roles in the direct regulation of the hypothalamus-pituitary-gonad axis and leptin in goldfish. Therefore, we suggest that Kiss system gene expression is correlated with energy balance and reproduction.

Human CD8+ T-Cell Populations That Express Natural Killer Receptors

  • June-Young Koh;Dong-Uk Kim;Bae-Hyeon Moon;Eui-Cheol Shin
    • IMMUNE NETWORK
    • /
    • 제23권1호
    • /
    • pp.8.1-8.13
    • /
    • 2023
  • CD8+ T cells are activated by TCRs that recognize specific cognate Ags, while NK-cell activation is regulated by a balance between signals from germline-encoded activating and inhibitory NK receptors. Through these different processes of Ag recognition, CD8+ T cells and NK cells play distinct roles as adaptive and innate immune cells, respectively. However, some human CD8+ T cells have been found to express activating or inhibitory NK receptors. CD8+ T-cell populations expressing NK receptors straddle the innate-adaptive boundary with their innate-like features. Recent breakthrough technical advances in multi-omics analysis have enabled elucidation of the unique immunologic characteristics of these populations. However, studies have not yet fully clarified the heterogeneity and immunological characteristics of each CD8+ T-cell population expressing NK receptors. Here we aimed to review the current knowledge of various CD8+ T-cell populations expressing NK receptors, and to pave the way for delineating the landscape and identifying the various roles of these T-cell populations.

Analysis of Rice Blast Infection and Resistance-inducing Mechanisms via Effectors Secreted from Magnaporthe oryzae

  • Saitoh, Hiromasa;H, Kanzaki;K, Fujisaki;R, Terauchi
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2015년도 춘계학술대회 및 임시총회
    • /
    • pp.61-61
    • /
    • 2015
  • Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most destructive diseases of rice worldwide. The rice - M. oryzae pathosystem has become a model in the study of plant - fungal interactions due to its economic importance and accumulating knowledge. During the evolutionary arms race with M. oryzae, rice plants evolved a repertoire of Resistance (R) genes to protect themselves from diseases in a gene-for-gene fashion. M. oryzae secretes a battery of small effector proteins to manipulate host functions for its successful infection, and some of them are recognized by host R proteins as avirulence effectors (AVR), which turns on strong immunity. Therefore, the analysis of interactions between AVRs and their cognate R proteins provide crucial insights into the molecular basis of plant - fungal interactions. Rice blast resistance genes Pik, Pia, Pii comprise pairs of protein-coding ORFs, Pik-1 and Pik-2, RGA4 and RGA5, Pii-1 and Pii-2, respectively. In all three cases, the paired genes are tightly linked and oriented to the opposite directions. In the AVR-Pik/Pik interaction, it has been unraveled that AVR-Pik binds to the N-terminal coiled-coil domain of Pik-1. RGA4 and RGA5 are necessary and sufficient to mediate Pia resistance and recognize the M. oryzae effectors AVR-Pia and AVR1-CO39. A domain at the C-terminus of RGA5 characterized by a heavy metal associated domain was identified as the AVR-binding domain of RGA5. Similarly, physical interactions among Pii-1, Pii-2 and AVR-Pii are being analyzed.

  • PDF

Eryngium foetidum Suppresses Inflammatory Mediators Produced by Macrophages

  • Mekhora, Chusana;Muangnoi, Channarong;Chingsuwanrote, Pimjai;Dawilai, Suwitcha;Svasti, Saovaros;Chasri, Kaimuk;Tuntipopipat, Siriporn
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권2호
    • /
    • pp.653-664
    • /
    • 2012
  • Objective: This study assessed anti-inflammatory and antioxidant activities of $E.$ $foetidum$ leaf extract on LPS-activated murine macrophages. Methods: RAW264.7 cells were pretreated with or without $E.$ $foetidum$ extract for 1 h prior to incubation with LPS for 24 h. Anti-inflammatory activity was evaluated with reference to iNOS, COX-2, TNF-${\alpha}$ and IL-6 gene expression. In addition, NO and intracellular ROS generation were determined by Griess method and fluorescence intensity and activation of MAPKs and $I{\kappa}B$ by Western blotting. Results: Prior treatment with $E.$ $foetidum$ leaf extract inhibited elevation of IL-6, TNF-${\alpha}$, iNOS and COX-2, together with their cognate mRNAs in a dose-dependent manner. NO and intracellular ROS contents were similarly reduced. These effects were due to inhibition of LPS-induced phosphorylation of JNK and p38 as well as $I{\kappa}B$. $E.$ $foetidum$ ethanol extract were shown to contain lutein, ${\beta}$-carotene, chlorogenic acid, kaempferol and caffeic acid, compounds known to exert these bioactive properties. Conclusions: $E.$ $foetidum$ leaf extract possesses suppressive effects against pro-inflammatory mediators. Thus, $E.$ $foetidum$ has a high potential to be used as a food supplement to reduce risk of cancer associated with inflammation.

Neurokinin B-related Peptide Suppresses the Expression of GnRH I, Kiss2 and tac3 in the Brain of Mature Female Nile tilapia Oreochromis niloticus

  • Jin, Ye Hwa;Park, Jin Woo;Kim, Jung-Hyun;Kwon, Joon Yeong
    • 한국발생생물학회지:발생과생식
    • /
    • 제20권1호
    • /
    • pp.51-61
    • /
    • 2016
  • Neurokinin B (NKB) and neurokinin B related peptide (NKBRP) belong to tachykinin peptide family. They act as a neurotransmitter and/or neuromodulator. Mutation of NKB and/or its cognate receptor, NK3R resulted in hypogonadotropic hypogonadism in mammals, implying a strong involvement of NKB/NK3R system in controlling mammalian reproduction. Teleosts possess NKBRP as well as NKB, but their roles in fish reproduction need to be clarified. In this study, NKB and NKBRP coding gene (tac3) was cloned from Nile tilapia and sequenced. Based on the sequence, Nile tilapia NKB and NKBRP peptide were synthesized and their biological potencies were tested in vitro pituitary culture. The synthetic NKBRP showed direct inhibitory effect on the expression of GTH subunits at the pituitary level. This inhibitory effect was confirmed in vivo by means of intraperitoneal (ip) injection of synthetic NKB and NKBRP to mature female tilapia (20 pmol/g body weight [BW]). Both NKB and NKBRP had no effect on the plasma level of sex steroids, E2 and 11-KT. However, NKBRP caused declines of expression level of GnRH I, Kiss2 and tac3 mRNAs in the brain while NKB seemed to have no distinct effect. These results indicate some inhibitory roles of NKBRP in reproduction of mature female Nile tilapia, although their exact functions are not clear at the moment.