• Title/Summary/Keyword: cogeneration plant

Search Result 67, Processing Time 0.031 seconds

Influence of District Heating Return Temperature on Performance of Steam Turbine in Cogeneration Plant (지역난방 회수온도가 열병합발전소 증기터빈 성능에 미치는 영향 연구)

  • Kim, Jonghyun;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.14 no.3
    • /
    • pp.42-48
    • /
    • 2018
  • If the combined operation of Gwanggyo Cogeneration plant is similar to that of 2017, the CHP return temperature is lowered to $4^{\circ}C$, $6.3^{\circ}C$ and $7.8^{\circ}C$ according to the increase of heat surface area and the electric power is increased by 413 kW and 676 kW from its original 39,025 kW, and when the heat surface area is increased 75% electric power increases by 834 kW, totaling 39,859 kW. NPV, which is an economic analysis standard, is worth 350 million won, 500 million won, and 520 million won, and all measures to increase the heat surface area are proven to be worth the investment. As the heat transfer area increased, the electric power and NPV increased proportionally but the rise amount decreased. The electrical output and NPV were found to be the highest among the three options when the heat transfer area was increased by 75%.

  • PDF

증기터빈의 오일 휩 현상 및 대책

  • Gu, Jae-Ryang
    • 열병합발전
    • /
    • s.37
    • /
    • pp.18-21
    • /
    • 2004
  • There are several bearing system at large steam-turbines in thermal power plant. The bearing system is one of the most important parts of rotating machinery. The steam turbine vibrations mainly depend on the bearing oil the shaft alignment condition. This paper describes on the steam turbine abnormal vibration due to the oil whip in terms of the shaft alignment in the thermal power plant.

  • PDF

Development of a Biogas Engine for Cogeneration System (바이오스가스를 이용한 열병합 발전용 엔진 개발)

  • Kim, Yeong-Min;Lee, Jang-Hui;Ju, Seong-Ho
    • 연구논문집
    • /
    • s.30
    • /
    • pp.33-42
    • /
    • 2000
  • We must stabilize quickly increasing waste matters in urban life and livestock industry. Biogas including landfill gas and digester gas is byproduct of anaerobic decomposition of organic waste matter and contains 40%-70% methane, which can be used for energy purposes. Utilization of biogas reduce the emission of methane into the atmosphere to minimize greenhouse effect and the carbon dioxide (CO2) emitted when biogas is converted to energy has been taken out of the atmosphere by growing plant. Recently, bioenergy is world-widely noticeable as all contributing to the greenhouse effect. This paper presents development process of a biogas engine for cogeneration system and results of application to digester gas and landfill gas in site. The biogas engine is a dual fuel engine operated on biogas with a diesel pilot. At present, the engine can substitute biogas for diesel fuel up to 85%. but it can be said that there is a possibility of improvement in performance.

  • PDF

The thermodynamic efficiency characteristics of combined cogeneration system of 120MW (120MW급 열병합 복합발전시스템의 열역학적 효율 특성)

  • Choi, Myoungjin;Kim, Hongjoo;Kim, Byeongheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.29-36
    • /
    • 2017
  • In this study, acombined cogeneration power plant produced two types of thermal energy and electric or mechanical power in a single process. The performance of each component of the gas turbine-combined cogeneration system was expressed as a function of the fuel consumption of the entire system, and the heat and electricity performance of each component. The entire system consisted of two gas turbines in the upper system, and two heat recovery steam generators (HRSG), a steam turbine, and two district heat exchangers in the lower system. In the gas turbine combined cogeneration system, the performance test after 10,000 hours of operation time, which is subject to an ASME PTC 46 performance test, was carried out by the installation of various experimental facilities. The performance of the overall output and power plant efficiency was also analyzed. Based on the performance test data, the test results were compared to confirm the change in performance. This study performed thermodynamic system analysis of gas turbines, heat recovery steam generators, and steam turbines to obtain the theoretical results. A comparison was made between the theoretical and actual values of the total heat generation value of the entire system and the heat released to the atmosphere, as well as the theoretical and actual efficiencies of the electrical output and thermal output. The test results for the performance characteristics of the gas turbine combined cogeneration power plant were compared with the thermodynamic efficiency characteristics and an error of 0.3% was found.

An Empirical Study on the Operation of Cogeneration Generators for Heat Trading in Industrial Complexes

  • Kim, Jaehyun;Kim, Taehyoung;Park, Youngsu;Ham, Kyung Sun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.3
    • /
    • pp.29-39
    • /
    • 2019
  • In this study, we introduce a model that satisfies energy efficiency and economical efficiency by introducing and demonstrating cogeneration generators in industrial complexes using various actual data collected at the site. The proposed model is composed of three scenarios, ie, full - time operation, scenario operated according to demand, and a fusion type. In this study, the power generation profit and surplus thermal energy are measured according to the operation of the generator, and the thermal energy is traded according to the demand of the customer to calculate the profit and loss including the heat and evaluate the economic efficiency. As a result of the study, it is relatively profitable to reduce the generation of the generator under the condition that the electricity rate is low and the gas rate is high, while the basic charge is not increased. On the contrary, if the electricity rate is high and the gas rate is low, The more you start up, the more profit you can see. These results show that even a cogeneration power plant with a low economic efficiency due to a low "spark spread" has sufficient economic value if it can sell more than a certain amount of heat energy from a nearby customer and adjust the applied power through peak management.

A Suggestion of Penalty Cost Appropriation Methodology for Performance Acceptance Test of CGAM Cogeneration - Part I (CGAM 열병합발전의 인수성능에 대한 페널티 비용 책정 방법론 제안 - Part I)

  • Kim, Deok-Jin
    • Plant Journal
    • /
    • v.12 no.2
    • /
    • pp.36-40
    • /
    • 2016
  • At the contract for power plant construction, the penalty appropriation on performance decrease is signed between ordering organization and construction firm. In this, the penalty cost signed must be reasonable value that both of ordering organization and construction firm can accept, therefore the methodology for penalty appropriation is very important. Cogeneration is a system that produces electricity and heat at the same time, therefore the penalty appropriation for cogeneration should be uncertain. Thermoeconomics analyzes various energy costs, however the relation of thermoeconomics and penalty cost may not be analyzed up to now. The aim of this study demonstrates that thermoeconomics can be applied to the penalty appropriation at the performance acceptance test. As the result of CGAM system, if the construction cost is $10,000,000, the value of $6,665,688 was appropriated to the electricity production performance and the value of $3,334,312 was appropriated to the heat production performance. Therefore if one percentage at the electricity production performance decreases, the penalty is $6,666, and one percentage at the heat production performance decrease, we can understand that the penalty is $3,334.

  • PDF

Exergy and exergoeconomic analysis of hydrogen and power cogeneration using an HTR plant

  • Norouzi, Nima;Talebi, Saeed;Fani, Maryam;Khajehpour, Hossein
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2753-2760
    • /
    • 2021
  • This paper proposes using sodium-cooled fast reactor technologies for use in hydrogen vapor methane (SMR) modification. Using three independent energy rings in the Russian BN-600 fast reactor, steam is generated in one of the steam-generating cycles with a pressure of 13.1 MPa and a temperature of 505 ℃. The reactor's second energy cycles can increase the gas-steam mixture's temperature to the required amount for efficient correction. The 620 ton/hr 540 ℃ steam generated in this cycle is sufficient to supply a high-temperature synthesis current source (700 ℃), which raises the steam-gas mixture's temperature in the reactor. The proposed technology provides a high rate of hydrogen production (approximately 144.5 ton/hr of standard H2), also up to 25% of the original natural gas, in line with existing SMR technology for preparing and heating steam and gas mixtures will be saved. Also, exergy analysis results show that the plant's efficiency reaches 78.5% using HTR heat for combined hydrogen and power generation.

A Study of Verification on Application of Directional OCR and OCGR for Power System with Small Scale Cogeneration (소형 열병합 발전소의 계통연계시 방향성 과전류 및 지락과전류 계전기의 적용 검증 연구)

  • Lee, Hee-Tae;Cho, Man-Young;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.944-950
    • /
    • 2008
  • When small cogenerators are operated in connected with power system, there are many positive aspects such as the reduction of power plant construction, making a improvement of power security etc. At the same time, there are some negative effects or difficulties such as we should make sure of protective coordination, especially, Actually these are not fault, but it is likely to consider the current as the fault. This is one of major causes of malfunctions for protective relays in power distribution system which is including interconnection point. Thus, in this paper, We showed that the directional protection is necessary to the dispersed generation system which is including connection point. We also executed contingency analysis to find out the magnitude of fault current and direction which are classified by fault points, length of line and kinds of faults using ETAP power system analysis program.