• Title/Summary/Keyword: coexisting networks

Search Result 14, Processing Time 0.017 seconds

Performance Analysis of BLE System for Wireless IoT Network Design (IoT 무선 네트워크 설계를 위한 BLE 시스템의 성능 분석)

  • Jae-sung Roh
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.481-486
    • /
    • 2022
  • The recent rapid growth of the IoT(Internet of Things) is leading to the spread of low-power wireless technology. A major challenge in designing IoT wireless networks is to achieve coexistence between different wireless technologies that share the 2.4 [GHz] ISM (Industrial Scientific Medical) frequency band. Therefore, there is a need for research on improving the reliability of wireless networks and coexisting operation between wireless networks. In particular, it is necessary to study an interference model and performance for mutual service coexistence in a BLE (Bluetooth Low Energy) wireless network environment, which is expected to be widely used as a connection medium between devices in various industrial fields. In this paper, the co-channel interference model with the IEEE 802.15.4 system is established focusing on the physical layer of the BLE system widely used in residential and industrial wireless applications, and the performance of the BLE wireless communication system is analyzed in the co-channel interference environment. As a result of the analysis, as the distance between the interference source and the BLE system increases in an environment where noise and co-channel interference exist, the amount of co-channel interference decreases and the error rate performance of the BLE system improves.

An Algorithm for Estimating Ep/No of UWB Signals (UWB 신호의 Ep/No 추정 알고리즘)

  • Im, Sung-Bin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9C
    • /
    • pp.1316-1322
    • /
    • 2004
  • Recently, the UWB (ultra wide-band) wireless communication technology, which provides high data transmission and is capable of linearly trading between throughput and signal-to-noise ratio (SNR), has drawn much attention for short-range wireless networks. Fully exploiting its notable features and minimizing its interference to coexisting other systems require the knowledge of SNR's at receivers In this paper, we propose an algorithm for estimating the pulse energy to noise ratio Ep/No of UWB signal with utilization of outputs from a correlator at a receiver, and evaluate the performance of the proposed algorithm through computer simulation. According to simulation results, the maximum standard deviation is about 1 13 dB with a block size of 500. Except for Ep/No=O and 2 dB cases with a block size of 500, no errors greater than 3 dB were observed in all the remaining experiments. Generally speaking, it improves as the true Ep/No, increases and as the block size increases A notable feature of the proposed algorithm is that it does not reduce the effective throughput because the estimation process does not require sending additional training signal of any specific format.

Enhancement in Coexistence Capability via Virtual Channel Management for IEEE 802.15.4 LR-WPANs (가상 채널 관리를 통한 IEEE 802.15.4 LR-WPAN의 공존 능력 향상 기법)

  • Kim Tae-Hyun;Ha Jae-Yeol;Choi Sung-Hyun;Kwon Wooh-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5C
    • /
    • pp.519-533
    • /
    • 2006
  • The number of channels specified in IEEE 802.15.4 Low-Rate Wireless Personal Area Networks(LRWPANs) is too few to operate many applications of WPANs in the same area. To overcome this limit, we introduce Virtual Channel, a novel concept to increase the number of available channels when various WPAN applications coexist. Basically, a virtual channel is a newly-created channel via superframe scheduling within the inactive period of a logical channel preoccupied by other WPANs. To maximize the coexistence capability of WPANs using virtual channels, we propose Least Collision superframe scheduler(LC-scheduler), its less complex heuristics both for a given single channel, and Virtual Channel Selector(VCS) to efficiently manage multiple available logical channels. In addition, a simple but practical synchronization method is developed to compensate different time drifts among coexisting WPANs. The simulation results demonstrate that a remarkable improvement on the coexistence capability of the 802.15.4 can be achieved through the proposed schemes.

A Coexistence Mitigation Scheme in IEEE 802.15.4-based WBAN (IEEE 802.15.4 기반 WBAN의 공존 문제 완화 기법)

  • Choi, Jong-hyeon;Kim, Byoung-seon;Cho, Jin-sung
    • Journal of Internet Computing and Services
    • /
    • v.16 no.3
    • /
    • pp.1-11
    • /
    • 2015
  • WBAN(Wireless Body Area Network) operating around the human body aims at medical and non-medical service at the same time. and it is the short-range communication technology requiring low-power, various data rate and high reliability. Various studies is performing for IEEE 802.15.4, because IEEE 802.15.4 can provide high compatibility for operate WBAN among communication standard satisfiable these requirements. Meanwhile, in the case of coexisting many IEEE 802.15.4-based WBAN, signal interference and collision are the main cause that is decreasing data reliability. but IEEE 802.15.4 Standard does not consider about coexistence of many networks. so it needs improvement. In this paper, To solve about this problem, identify coexistence problem of IEEE 802.15.4-based WBAN by preliminary experiments. and propose a scheme to mitigate the reliability decrease at multiple coexistence WBAN. The proposed scheme can be classified in two steps. The first step is avoidance to collision on the CFP through improving data transmission. The second step is mitigation collision through converting channel access method. Proposed scheme is verified the performance by performing comparison experiment with Standard-based WBAN.