• 제목/요약/키워드: coefficient region

검색결과 1,350건 처리시간 0.023초

Comparison of Wave Model with KMA Buoy Observation Results in the 2002 - 2005 year (기상청 부이 관측결과를 이용한 파랑모델 비교 : 2002년 - 2005년)

  • You, Sung Hyup;Seo, Jang-Won;Chang, You-Soon;Park, Sangwook;Youn, Yong-Hoon
    • Atmosphere
    • /
    • 제16권4호
    • /
    • pp.279-301
    • /
    • 2006
  • This study analyzed the characteristics of the wind waves near the Korean marginal seas in the 2002 - 2005 year using the third generation wave model, WAVEWATCH - III model. In order to investigate the model performance, model results were compared with the marine meteorological observation results. The 4 years average correlation coefficient between model and observation shows very high value of about 0.77. The model of this study represents very well the characteristics of wind waves near the Korean marginal seas. Simulated monthly sea surface winds and wind waves show the evident spatial variations and this model also simulates very well seasonal characteristics of wind waves in this region.

Rationalization of allosteric pathway in Thermus sp. GH5 methylglyoxal synthase

  • Zareian, Shekufeh;Khajeh, Khosro;Pazhang, Mohammad;Ranjbar, Bijan
    • BMB Reports
    • /
    • 제45권12호
    • /
    • pp.748-753
    • /
    • 2012
  • A sequence of 10 amino acids at the C-terminus region of methylglyoxal synthase from Escherichia coli (EMGS) provides an arginine, which plays a crucial role in forming a salt bridge with a proximal aspartate residue in the neighboring subunit, consequently transferring the allosteric signal between subunits. In order to verify the role of arginine, the gene encoding MGS from a thermophile species, Thermus sp. GH5 (TMGS) lacking this arginine was cloned with an additional 30 bp sequence at the 3'-end and then expressed in form of a fusion TMGS with a 10 residual segment at the C-terminus ($TMGS^+$). The resulting recombinant enzyme showed a significant increase in cooperativity towards phosphate, reflected by a change in the Hill coefficient (nH) from 1.5 to 1.99. Experiments including site directed mutagenesis for Asp-10 in TMGS and $TMGS^+$, two dimentional structural survey, fluorescence and irreversible thermoinactivation were carried out to confirm this pathway.

Jet Impingement Heat Transfer on a Pedestal Encountered in Chip Cooling (충돌제트를 이용한 pedestal 형상의 칩 냉각연구)

  • Lee, Dae-Hee;Chung, Seung-Hoon;Chung, Young-Suk;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.124-130
    • /
    • 2001
  • The heat transfer and flow measurements were made on a cylindrical pedestal mounted on a flat plate with a turbulent impinging air jet. The heat transfer coefficient distributions on the flat plate were measured using the shroud-transient technique and liquid crystal was used to measure the surface temperature. The jet Reynolds number (Re) is 23,000, the dimensionless nozzle-to-surface distance (L/d) from 2 to 10, the dimensionless pedestal diameter-to-height (H/D) from 0 to 1.5, the dimensionless 2nd pedestal diameter-to-height ($H/D_2$) from 0 to 0.4 and the distance from the stagnation point to 2nd pedestal (p/D). The results show that for H/D = 0.5 to 1.5, the Nusselt number distributions on the plate surface exhibit a maximum between $r/d\;{\cong}\;1.0$ and 1.5. The presence of the pedestal appears to cause the flow separation and reattachment on the plate surface, which results in the maximum heal transfer coefficient. Also, for p/D = 2.5 and $H/D_2$ = 0.3, the local Nusselt number in the region corresponding to $r/d\;{\cong}\;1.1$ was increased up to 50% compared to that for $H/D_2=0$.

  • PDF

An Extended Similarity Solution for One-Dimensional Multicomponent Alloy Solidification in the Presence of Shrinkage-Induced Flow (체적수축유동이 있는 일차원 다원합금 응고에 대한 확장된 해석해)

  • Chung, Jae-Dong;Yoo, Ho-Seon;Choi, Man-Soo;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제24권3호
    • /
    • pp.426-434
    • /
    • 2000
  • This paper deals with a generalized similarity solution for the one-dimensional solidification of ternary or higher-order multicomponent alloys. The present approach not only retains the existing features of binary systems such as temperature- solute coupling, shrinkage-induced flow, solid-liquid property differences, and finite back diffusion, but also is capable of handling a multicomponent alloy without restrictions on the partition coefficient and microsegregation parameter. For an alloy of N-solute species, governing equations in the mushy region reduce to (N+2) nonlinear ordinary differential equations via similarity transformation, which are to be solved along with the closed-form solutions for the solid and liquid regions. A linearized correction scheme adopted in the solution procedure facilitates to determine the solidus and liquidus positions stably. The result for a sample ternary alloy agrees excellently with the numerical prediction as well as the reported similarity solution. Additional calculations are also presented to show the utility of this study. Finally, it is concluded that the present analysis includes the previous analytical approaches as subsets.

Effects of Oil and Internally Finned Tubes on the Performance of the Air-Conditioning Unit (전열관 형상과 냉동기유 효과를 고려한 공조기기의 성능예측)

  • Yun, J.Y.;Lee, K.S.;Lee, D.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제6권4호
    • /
    • pp.388-398
    • /
    • 1994
  • Computer simulation model for predicting more accurately the heat transfer performance of the evaporator and condenser which have significantly affected on the performance of air-conditioner has been suggested. In this model oil and micro-fin tube used in a actual unit are considered to simulate the more realistic case. The effects of oil and micro-fin tube on the performance of an air-conditioner have been investigated. It is found that the present model requires higher pressure than the existing model due to the characteristics of the tube considered. However, it turns out that the present model is very close to an actual cycle. As the amount of oil inside the tube increases, condensation heat transfer coefficient shows a linear decrease irrespective of a kind of oil, while evaporation heat transfer coefficient increases slightly in the oil with low viscosity and decreases exponentially in the oil with high viscosity. Pressure drop in both evaporator and condenser increases linearly irrespective of a kind of oil. It is also found that the effect of the variation of oil concentration on the magnitude of two-phase region is negligible.

  • PDF

A Study of Sliding Friction and Wear Properties for PTFE Layer coated on Steel (철강재료위 coating된 PTFE 막층의 미끄럼 마찰마모특성 연구)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • 제24권2호
    • /
    • pp.96-103
    • /
    • 2008
  • PTFE is generally utilized as the form of composites with adding various fillers. The purpose of this paper lies on clarifying the friction and wear properties of the PTFE coating layer on steel. Especially, the effects of PTFE powder size for coating and surface roughness of the counter material on the properties are investigated. Sliding friction and wear tests are conducted at several sliding speeds by employing two types of PTFE coating layer using different powder sizes. One type of coating layer is composed of uniform fine powder, whereas the other type is made up of mixture powder of different sizes. As results, it is found that PTFE coating layer are effective to improve the wear resistance and to reduce the friction coefficient. It is clear that PTFE coating layers are abrasively removed by asperities of the counter material during sliding contact. However, PTFE coating layer with uniform fine powder shows somewhat better wear resistance than that with mixture powder of different sizes in low sliding speed region. It can be seen that the wear of the coating layer are drastically reduced because wear fragment from counter material are transferred to the coating layer. On the other hand, friction coefficient is shown not to be directly related with PTFE powder size in coating layer.

Robust Control of an Anti-Lock Eddy Current Type Brake System (잠김 방지 기능을 가지는 비접촉식 와전류형 제동장치의 견실제어)

  • 이갑진;박기환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제4권4호
    • /
    • pp.525-533
    • /
    • 1998
  • A conventional contact type brake system which uses a hydraulic system has mny Problems such as time delay response due to pressure build-up, brake pad wear due to contact movement, bulky size, and low braking performance in high speed region. As vehicle speed increases, a more powerful brake system is required to ensure vehicle safety and reliability. In this work, a contactless brake system of an eddy current type is proposed to overcome problems. Optimal torque control which minimizes a braking distance is investigated with a scaled-down model of an eddy current type brake. It is possible to realize optimal torque control when a maximum friction coefficient (or desired slip ratio) corresponding to road condition is maintained. Braking force analysis for a scaled-down model is done theoretically and experimentally compensated. To accomplish optimal torque control of an eddy current type brake system, a sliding mode control technique which is, one of the robust nonlinear control technique is developed. Robustness of the sliding mode controller is verified by investigating the braking performance when friction coefficient is varied. Simulation and experimental results will be presented to show that it has superior performance compared to the conventional method.

  • PDF

Settlement prediction for footings based on stress history from VS measurements

  • Cho, Hyung Ik;Kim, Han Saem;Sun, Chang-Guk;Kim, Dong Soo
    • Geomechanics and Engineering
    • /
    • 제20권5호
    • /
    • pp.371-384
    • /
    • 2020
  • A settlement prediction method based on shear wave velocity measurements and soil nonlinearity was recently developed and verified by means of centrifuge tests. However, the method was only applicable to heavily overconsolidated soil deposits under enlarged yield surfaces. In this study, the settlement evaluation method was refined to consider the stress history of the sublayer, based on an overconsolidation ratio evaluation technique, and thereby incorporate irrecoverable plastic deformation in the settlement calculation. A relationship between the small-strain shear modulus and overconsolidation ratio, which can be determined from laboratory tests, was adopted to describe the stress history of the subsurface. Based on the overconsolidation ratio determined, the value of an empirical coefficient that reflects the effect of plastic deformation over the elastic region is determined by comparing the overconsolidation ratio with the stress increment transmitted by the surface design load. The refined method that incorporate this empirical coefficient was successfully validated by means of centrifuge tests, even under normally consolidated loading conditions.

A Hybrid CBPWM Scheme for Single-Phase Three-Level Converters

  • Wang, Shunliang;Song, Wensheng;Feng, Xiaoyun;Ding, Rongjun
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.480-489
    • /
    • 2016
  • A novel hybrid carrier-based pulse width modulation (CBPWM) scheme that combines unipolar and dipolar modulations is proposed for single-phase three-level rectifiers, which are widely applied in railway traction drive systems. The proposed CBPWM method can satisfy the volt-second balancing principle in the complete modulation index region through overmodulation compensation. The modulation scheme features two modulation modes: unipolar and dipolar. The operation range limits of these modulation modes can be modified by changing the separation coefficient. In comparison with the traditional unipolar CBPWM, the proposed hybrid CBPWM scheme can provide advantageous features, such as lower high-order harmonic distortion of the line current and better utilization of switching frequency. The separation coefficient value is optimized to achieve the maximum utilization of these advantages. The experimental results verify the feasibility and effectiveness of the proposed hybrid CBPWM scheme.

Large Eddy Simulation on the Aerodynamic Performance of Three-Dimensional Small-Size Axial Fan with the Different Depth of Bellmouth (벨마우스 깊이가 다른 3차원 소형축류홴의 공력특성에 대한 대규모 와 모사)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • 제19권6호
    • /
    • pp.19-25
    • /
    • 2015
  • The unsteady-state, incompressible and three-dimensional large eddy simulation(LES) was carried out to analyze the aerodynamic performance of three-dimensional small-size axial fan(SSAF) with the different depth of bellmouth. The static pressure coefficients analyzed by LES predict a little bit larger than measurements except stall region regardless of the installation depth between SSAF and bellmouth. Moreover, static pressure efficiencies analyzed by LES show about maximum 30% at the actual operating point ranges, but measurements do not. Therefore, if the blades of conventional SSAF have some more rigidity and complete dynamic balance, the aerodynamic performance of SSAF will be some more improved. In consequence, LES shows the best prediction performance in comparison with any other Reynolds averaged Navier-Stokes(RANS) method.