• Title/Summary/Keyword: coefficient of total resistance

Search Result 97, Processing Time 0.032 seconds

Durability performance of concrete containing Saudi natural pozzolans as supplementary cementitious material

  • Al-Amoudi, Omar S. Baghabra;Ahmad, Shamsad;Khan, Saad M.S.;Maslehuddin, Mohammed
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.119-126
    • /
    • 2019
  • This paper reports an experimental investigation conducted to evaluate the durability performance of concrete mixtures prepared utilizing blends of Type I Portland cement (OPC) and natural pozzolans (NPs) obtained from three different sources in Saudi Arabia. The control concrete mixture containing OPC alone as the binder and three concrete mixtures incorporating NPs were prepared keeping water/binder ratio of 0.4 (by weight), binder content of $370kg/m^3$, and fine/total aggregate ratio of 0.38 (by weight) invariant. The compressive strength and durability properties that included depth of water penetration, depth of carbonation, chloride diffusion coefficient, and resistance to reinforcement corrosion and sulfate attack were determined. Results of this study indicate that at all ages, the compressive strength of NP-admixed concrete mixtures was slightly less than that of the concrete containing OPC alone. However, the concrete mixtures containing NP exhibited lower depth of water penetration and chloride diffusion coefficient and more resistance to reinforcement corrosion and sulfate attack as compared to OPC. NP-admixed concrete showed relatively more depth of carbonation than OPC when subjected to accelerated carbonation. The results of this investigation indicates the viability of utilizing of Saudi natural pozzolans for improving the durability characteristics of concrete subjected to chloride and sulfate exposures.

Prediction of Residual Resistance Coefficient of Low-Speed Full Ships Using Hull Form Variables and Machine Learning Approaches (선형변수 기계학습 기법을 활용한 저속비대선의 잉여저항계수 추정)

  • Kim, Yoo-Chul;Yang, Kyung-Kyu;Kim, Myung-Soo;Lee, Young-Yeon;Kim, Kwang-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.312-321
    • /
    • 2020
  • In this study, machine learning techniques were applied to predict the residual resistance coefficient (Cr) of low-speed full ships. The used machine learning methods are Ridge regression, support vector regression, random forest, neural network and their ensemble model. 19 hull form variables were used as input variables for machine learning methods. The hull form variables and Cr data obtained from 139 hull forms of KRISO database were used in analysis. 80 % of the total data were used as training models and the rest as validation. Some non-linear models showed the overfitted results and the ensemble model showed better results than others.

An Experimental Study on the Operational Characteristics and Performance of the Sodium Heat Pipe (나트륨 히트파이프의 작동 특성 및 성능에 관한 실험적 연구)

  • Kang, Hwan-Kook;Lee, Dong-Chan;Park, Sang-Woon;Song, Jee-Hyuk;Yoo, Jung-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.311-316
    • /
    • 2005
  • The experimental study for an operational characteristics and performance of the sodium heat pipe were carried out. For an experiment. the heat pipe which is 1000mm length and 25.4mm diameter of stainless steel container with 50 mesh of screen wick using sodium as a working fluid is manufactured and tested as functions of heat flow rate, inclined angle and operating temperature. The test results are as follows. During the start-up. frontal start up was observed because of the vapor density increasing as increased the hot zone. Also, the heat pipe showed uniform temperature over than $420^{\circ}C$ of the operating temperature. The average heat transfer coefficient increased as the heat flux and the vapor temperature increase, and the range of the total thermal resistance was 0.075-0.04 $^{\circ}C/W$ at the 12-53.55 $kW/m^2$ of heat flux and $500-750^{\circ}C$of operating temperature. The maximum heat flow rate was 750W at the 10 degree of top heating mode.

  • PDF

Numerical Analysis of Ship Local Resistance (선체 국소 저항 수치 해석)

  • Park, Dong-Woo;Seo, Jang-Hoon;Yoon, Hyun-Sik;Chun, Ho-Hwan;Jung, Jae-Hwan;Kim, Mi-Jeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.74-79
    • /
    • 2012
  • The present study aims at suggesting the systematic approach to analyze the local drag components as the resistance performance characterized by the flow of the ship. In order to identify the local areas, the hull surface is decomposed into SVM (Station-Vertical Section Map) which consists of 20 stations along the longitudinal direction and 20 sections along the vertical direction (from the bottom to the waterline). Successively, on the SVM, the friction and pressure drag coefficients as the components of total drag coefficient have been analyzed for two different hull forms of Wigley and KVLCC by using CFD.

Chemically enhanced steam cleaning for the control of ceramic membrane fouling caused by manganese and humic acid (망간과 휴믹산에 의한 세라믹 막 오염의 제어를 위한 약품 스팀세정의 적용)

  • An, Sun-A;Park, Cheol-Gyu;Lee, Jin-San;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.425-436
    • /
    • 2021
  • In this study, chemically enhanced steam cleaning(CESC) was applied as a novel and efficient method for the control of organic and inorganic fouling in ceramic membrane filtration. The constant filtration regression model and the resistance in series model(RISM) were used to investigate the membrane fouling mechanisms. For total filtration, the coefficient of determination(R2) with an approximate value of 1 was obtained in the intermediate blocking model which is considered as the dominant contamination mechanism. In addition, most of the coefficient values showed similar values and this means that the complex fouling was formed during the filtration period. In the RISM, R c/R f increased about 4.37 times in chemically enhanced steam cleaning compared to physical backwashing, which implies that the internal fouling resistance was converted to cake layer resistance, so that the membrane fouling hardly to be removed by physical backwashing could be efficiently removed by chemically enhanced steam cleaning. The results of flux recovery rate showed that high-temperature steam may loosen the structure of the membrane cake layer due to the increase in diffusivity and solubility of chemicals and finally enhance the cleaning effect. As a consequence, it is expected that chemically enhanced steam cleaning can drastically improve the efficiency of membrane filtration process when the characteristics of the foulant are identified.

Flow Resistance Analysis for Lower Naesung Stream Considering Grain and Bedform Roughness (사립조도와 하상형상조도를 고려한 내성천 하류의 흐름저항 분석)

  • Ji, Un;Kim, Ji-Sung;Lee, Chan Joo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1209-1220
    • /
    • 2013
  • Roughness coefficients calibrated by flow modeling using the 1-dimensional numerical model were analyzed for the downstream section of Naesung Stream in this study. Also, the bedform configuration at the Hyangseok Station was predicted for measured and simulated hydraulic conditions of flows and total flow roughness was estimated with the coefficient of grain roughness. The Manning's n coefficients calibrated by numerical modeling and estimated by considering of grain and bedform roughness were compared and examined. As a result, the Manning's n by numerical modeling was greater than the coefficient range estimated by grain and bedform roughness at the low flow regime due to the other factors such as vegetation, sinuosity, and sand bar. However, the Manning's n by numerical modeling was included in the coefficient range by grain and bedform roughness at the transition and high flow regime over $500m^3/s$ of flow discharge.

Flow Analysis around a High-speed Planing Hull Model (고속 활주선 모형 주위의 유동해석)

  • Kim, Byoung-Nam;Kim, Wu-Joan;Yoo, Jae-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.38-46
    • /
    • 2009
  • Two sets of numerical simulations were carried out for a planing hull model ship. In the first, the WAVIS 1.4 linear and nonlinear potential solver was utilized with the free support condition, in which the running posture was determined during calculation. The linear and nonlinear potential calculation results showed qualitative agreement in the trim and resistance coefficient with the MOERI towing tank test. However, the nonlinear potential calculation gave better results than the linear method. In the next simulation, Fluent 6.3.26 with a VOF model and the WAVIS 1.4 nonlinear potential solver were used with the given running posture from the measurement carried out in the MOERI towing tank. Fluent with the VOF method had substantially better agreement with model test results than the results from the WAVIS nonlinear potential calculation for the total resistance coefficient, and for the bow and stern wave patterns, in spite of the much greater computational costs. Both methods can be utilized in planing hull design when their limitations are perceived, and the running posture should be predicted correctly.

Hydrodynamic Resistance of Some Trawl Nets Being Used by M/S Saebada (새바다호에서 사용하는 트로올그물의 유체저항에 관하여)

  • KIM Jin-Kun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 1984
  • The author carried out an experiment to determine the resistance of trawl net aboard M/S Saebada, training ship of National Fisheries University of Pusan, 2,275 G/T and 3,600ps. Total tension loaded on warp were measured by the recording tension meter. Resistance of the net is estimated by subtracting the resistance of otter boards and warps from the total tension. Coefficient k and exponent n of the formula on the trawl net deduced by Koyama, $R_N=k\frac{d}{l}abv^n$ were calculated from the resistance of the net obtained. The results obtained are can be summarized as follows : 1. Six seamed net with two net pendant k=11, n=1.8 2. Eight seamed net with three net pendant k=11, n=1.8 3. Ten seamed net with three net pendant k=9, n=1.9 4. Ten seamed net with four net pendant k=9, n=1.9

  • PDF

Physical Performance of Metallic Jacquard Fabrics (메탈릭 자카드 직물 물리적 성능평가)

  • Kang, Duck-Hee;Lee, Jung-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.1
    • /
    • pp.149-159
    • /
    • 2009
  • The purposes of this study are to evaluate physical performance of metallic Jacquard fabrics, and to contribute to the research and development of the women's suit made of the metallic Jacquard fabrics. First, eight fabrics were woven with two kinds of warp yarns(nylon and rayon) and weft yarn blended with various contents(0, 7, 14, 21%) of metallic yarn. Second, the mechanical properties were measured by using the KES-FB system, and physical properties such as tensile strength, tearing strength, abrasion resistance, drape, pilling, snagging, degree of crease resistance, flexural stiffness, specular gloss, folding endurance and electrostatic propensity were measured. The results were as follows. As the metal fiber content increased, bending, shear, thickness and weight increased, which imply low recovery of wrinkles. It means that metallic Jacquard fabrics enable to use as a memory fabric. 7% metallic Jacquard fabric showed a low value at total hand value, but there was little change. As the metal fiber content increased, tensile strength, tearing strength, drape coefficient, specular gloss and flexural stiffness increased, however the degree of crease resistance, electrostatic propensity and folding endurance decreased. The metallic Jacquard fabrics were excellent in snagging, abrasion resistance and pilling.

Effect of Free Surface Based on Submergence Depth of Underwater Vehicle

  • Youn, Taek-Geun;Kim, Min-Jae;Kim, Moon-Chan;Kang, Jin-Gu
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.83-90
    • /
    • 2022
  • This paper presents the minimum submergence depth of an underwater vehicle that can remove the effect of free surface on the resistance of the underwater vehicle. The total resistance of the underwater vehicle in fully submerged modes comprises only viscous pressure and friction resistances, and no wave resistance should be present, based on the free surface effect. In a model test performed in this study, the resistance is measured in the range of 2 to 10 kn (1.03-5.14 m/s) under depth conditions of 850 mm (2.6D) and 1250 mm (3.8D), respectively, and the residual resistance coefficients are compared. Subsequently, resistance analysis is performed via computational fluid dynamics (CFD) simulation to investigate the free surface effect based on various submergence depths. First, the numerical analysis results in the absence of free surface conditions and the model test results are compared to show the tendency of the resistance coefficients and the reliability of the CFD simulation results. Subsequently, numerical analysis results of submergence depth presented in a reference paper are compared with the model test results. These two sets of results confirm that the resistance increased due to the free surface effect as the high speed and depth approach the free surface. Therefore, to identify a fully submerged depth that is not affected by the free surface effect, case studies for various depths are conducted via numerical analysis, and a correlation for the fully submerged depth based on the Froude number of an underwater vehicle is derived.