• Title/Summary/Keyword: codominant rate

Search Result 4, Processing Time 0.016 seconds

Effects on Density and Dominant rate of Periphyton by Variation of Dissolved Silicon Concentration (용존규소농도의 변화가 하천 부착조류의 밀도와 우점율에 미치는 영향에 관한 연구)

  • Jeon, Kyoung-ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.703-709
    • /
    • 2009
  • In this study, an artificial-waterway experiment was conducted, using an attachment plate, on which algae from Nanakita river was placed, to examine the influence exerted by the variation of the dissolved-silicon concentration on the river periphyton. As a result, the variation of the dissolved-silicon concentration was found to exert an influence on the density of the adhesion diatom, and the mole ratio limits of the silica were about $Si/P{\fallingdotseq}182$ and $Si/N{\fallingdotseq}16.4$ or less. Moreover, the mole ratio that is necessary for proliferation was found to be larger than the value of the oceanic algae. Senedesmus sp. and Ankistrodesmus sp., which used silica in adhesion chlorophyta, received the influence of the silicon concentration strongly, and the twowere found to be superior in the environment, making silica a restriction factor.

Ecophysiological Interpretations on the Water Relations Parameters of Trees(IX) - Measurement of the Transpiration Rate by the Heat Pulse Method in a Quercus mongolica Stand - (수목(樹木)의 수분특성(水分特性)에 관(關)한 생리(生理)·생태학적(生態學的) 해석(解析)(IX) - Heat pulse법(法)을 이용(利用)한 신갈나무임분(林分)의 증산속도(蒸散速度) 측정(測定) -)

  • Han, Sang Sup;Kim, Sun Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.2
    • /
    • pp.288-299
    • /
    • 1996
  • This is the basic study to investigate the amount of transpirational water loss in thrifty mature Quercus mongolica stand by the heat pulse method. The differences of heat pulse velocity by direction and depth, differences of heat pulse velocity by dominant, codominant and suppressed trees, diurnal changes of heat pulse velocity due to the change of leaf water potential, vapor pressure deficit and radiation, and sap flow path way in sapwood by dye penetration were measured in stems. Finally the amounts of daily and annual transpiration in stand were calculated by the heat pulse velocity. The results obtained were summarized as follows : 1. Relationship between heat pulse velocity(V) and sap flow rate(SFR) was obtained as a equation of SFR=1.37V. 2. The sap flow rate was high in the order of dominant, codominant, and suppressed trees. The daily heat pulse velocity changed with radiation, temperature and vapor pressure deficit. 3. The heat pulse velocity showed the similar diurnal variation as the leaf water potential change. 4. The heat pulse velocity showed the highest value in May(4.0cm/hr in average), the lowest one in July(2.9cm/hr in average). 5. The heat pulse velocity in the same stem presented the highest value in the northern direction, medium in western, and the lowest in southern and eastern. 6. The heat pulse velocity in stem was highest in 0.5cm, medium in 1.0cm, and lowest in 1.5cm depth from the surface of stem. 7. The sap flow path way in stem showed sectorial straight ascent pattern in four sample trees. 8. The amount of sap flow(SF) was presented as a equation of $SF=1.37A{\cdot}V$(A: the cross-sectional area of sapwood, V: heat pulse velocity), and especially SF was larger in dominant tree than codominant and suppressed trees. 9. The amount of daily transpiration was 5.6ton/ha/day, and its composition ratio was 72% at day and 28% at night. 10. The amount of stand transpiration per month was largest in May(168ton/ha/month), lowest in July(125ton/ha/month). The amount of stand transpiration per year was 839ton/ha/year.

  • PDF

Ecophysiological Interpretations on the Water Relations Parameters of Trees(VII) - Measurement of Water Flow by the Heat Pulse Method in a Larix leptolepis Stand - (수목(樹木)의 수분특성(水分特性)에 관(關)한 생리(生理)·생태학적(生態學的) 해석(解析)(VII) - Heat pulse법(法)에 의한 낙엽송임분(林分)의 수액류속(樹液流速) 계측(計測) -)

  • Han, Sang Sup;Kim, Sun Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.82 no.2
    • /
    • pp.152-165
    • /
    • 1993
  • This is the basic study in order to know the amount of transpirational water loss in a Larix leptorepis stand by a heat pulse method. Especially this study has been measured and discussed the diurnal and seasonal trends of heat pulse velocity by changes of radiation, temperature and humidity, differences of heat pulse velocity by direction and depth in stem, differences of heat pulse velocity by dominant, codominant and suppressed trees, diurnal change of heat pulse velocity by change of leaf water potential, sap flow path way in sapwood by dye penetration and amount of daily and annual transpiration in a tree and stand. The results obtained as follows : 1. Relation between heat pulse velocity(V) and sap flow rate(SFR) was established as a equation of SFR=1.37V($r=0.96^{**}$). 2. The sap flow rate presented in the order of dominant, codominant and suppressed tree, respectively. The daily heat pulse velocity was changed by radiation, temperature and vapor pressure deficit. 3. The heat pulse velocity in individual trees did not differ in early morning and in late night, but had some differed from 12 to 16 hours when radiation was relatively high. 4. The heat pulse velocity and leaf water potential showed similar diurnal variation. 5. The seasonal variation of heat pulse velocity was highest in August, but lowest in October and similar value of heat pulse velocity in the other months. 6. The heat pulse velocity in stem by direction was highest in eastern, but lowest in southern and similar velocity in western and northern. 7. The difference of heat pulse velocity in according to depths was highest in 2.0cm depth, medium in 1.0cm depth, and lowest in 3.0cm depth from surface of stem. 8. The sap flow path way in stem showed spiral ascent turning right pattern in five sample trees, especially showed little spiral ascent turning right in lower part than 3m hight above ground, but very speedy in higher than 3m hight. 9. The amount of sap flow(SF) was presented as a equation of SF=1.37AV and especially SF in dominant tree was larger than in codominant or suppressed tree. 10. The amount of daily transpiration was 30.8ton/ha/day and its composition ratio was 83% at day and 17% at night. 11. The amount of stand transpiration per month was largest in August(1,194ton/ha/month), lowest in May (386ton/ha/month). The amount of stand transpiration per year was 3,983ton/ha/year.

  • PDF

Studies on Wood Quality of Pinus koraiensis Sieb. et Zucc. (II) -On the Gross Structural Features of Stem - (잣나무의 재질(材質)에 관(關)한 연구(硏究) (제(第)2보(報)) -수간(樹幹)의 구조적(構造的) 형질(形質)-)

  • Lee, Won Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.17 no.1
    • /
    • pp.17-22
    • /
    • 1973
  • A study on the wood quality from planted Pinus koraiensis Sieb. et Zucc. has been undertaken by the University Forest in order to gain results of the gross structural features of stem. For this study some groups of trees were felled and several characteristics such as the degree of stem, slenderness, eccentric growth, heartwood diameter, height of butt sweep and butt-swell were analyzed. The results of the study are as follows. 1) The relation between diameter of log and its height in sample trees are nearly parallel to each other. But their degrees of slenderness in logs cut from intermediate and codominant trees are some what gentle as compared with that of logs from dominant tree. 2) The eccentric growth at transverse section of sample trees is generally decreased with the increase of tree height on all sample trees. 3) On the eccentric growth at transverse section of tree, a rather distinct tendency was noticed that all of sample trees showed the direction of eccentric growth in $R_2$ side. 4) Heartwood diameter appeares to become larger as tree growth decrease under same diameter of logs and log diameter in which heartwood appeares is larger in rapid growth rate trees. 5) The maximum height of butt-sweep generally shows that the larger the breast height diameter of tree is, the smaller its height becomes. On the contrary it was noticed that the larger the breast height diameter of trees, the higher the maximum height of butt-swell became. The direction of butt-sweep and butt-swell were shown in $R_1$ side in all sample trees.

  • PDF