• Title/Summary/Keyword: codes-of-practice

Search Result 185, Processing Time 0.025 seconds

Behaviour of transmission line conductors under tornado wind

  • Hamada, Ahmed;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • v.22 no.3
    • /
    • pp.369-391
    • /
    • 2016
  • Electricity is transmitted by transmission lines from the source of production to the distribution system and then to the end users. Failure of a transmission line can lead to devastating economic losses and to negative social consequences resulting from the interruption of electricity. A comprehensive in-house numerical model that combines the data of computational fluid dynamic simulations of tornado wind fields with three dimensional nonlinear structural analysis modelling of the transmission lines (conductors and ground-wire) is used in the current study. Many codes of practice recommend neglecting the tornado forces acting on the conductors and ground-wires because of the complexity in predicting the conductors' response to such loads. As such, real transmission line systems are numerically simulated and then analyzed with and without the inclusion of the lines to assess the effect of tornado loads acting on conductors on the overall response of transmission towers. In addition, the behaviour of the conductors under the most critical tornado configuration is described. The sensitivity of the lines' behaviour to the magnitude of tornado loading, the level of initial sag, the insulator's length, and lines self-weight is investigated. Based on the current study results, a recommendation is made to consider conductors and ground-wires in the analysis and design of transmission towers under the effect of tornado wind loads.

Dental characteristics on panoramic radiographs as parameters for non-invasive age estimation: a pilot study

  • Harin Cheong;Akiko Kumagai;Sehyun Oh;Sang-Seob Lee
    • Anatomy and Cell Biology
    • /
    • v.56 no.4
    • /
    • pp.474-481
    • /
    • 2023
  • The dental characteristics created by acquired dental treatments can be used as age estimators. This pilot study aimed to analyze the correlation between the number of teeth observed for dental characteristics and chronological age and to develop new non-invasive age estimation models. Dental features on panoramic radiographs (420 radiographs of subjects aged 20-89 years) were classified and coded. The correlation between the number of teeth for each selected code (codes V, X, T, F, P, and L) and age was observed, and multiple regression was performed to analyze the relationship between them. Eleven regression models with various combinations of dental sextants were presented. The model with the data from both sides of the posterior teeth on both jaws showed the best performance (root mean square error of 14.78 years and an adjusted R2 of 0.461). The model with all teeth was the second-best. Based on these results, we confirmed statistically significant correlations between certain dental features and chronological age. We also observed that some regression models performed sufficiently well to be used as adjunctive methods in forensic practice. These results provide valuable information for the design and performance of future full-scale studies.

Statistical Estimation of Specified Concrete Strength by Applying Non-Destructive Test Data (비파괴시험 자료를 적용한 콘크리트 기준강도의 통계적 추정)

  • Paik, Inyeol
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.52-59
    • /
    • 2015
  • The aim of the paper is to introduce the statistical definition of the specified compressive strength of the concrete to be used for safety evaluation of the existing structure in domestic practice and to present the practical method to obtain the specified strength by utilizing the non-destructive test data as well as the limited number of core test data. The statistical definition of the specified compressive strength of concrete in the design codes is reviewed and the consistent formulations to statistically estimate the specified strength for assessment are described. In order to prevent estimating an unrealistically small value of the specified strength due to limited number of data, it is proposed that the information from the non-destructive test data is combined to that of the minimum core test data. The the sample mean, standard deviation and total number of concrete test are obtained from combined test data. The proposed procedures are applied to an example test data composed of the artificial numerical values and the actual evaluation data collected from the bridge assessment reports. The calculation results show that the proposed statistical estimation procedures yield reasonable values of the specified strength for assessment by applying the non-destructive test data in addition to the limited number of core test data.

GMDH-based prediction of shear strength of FRP-RC beams with and without stirrups

  • Kaveh, Ali;Bakhshpoori, Taha;Hamze-Ziabari, Seyed Mahmood
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.197-207
    • /
    • 2018
  • In the present study, group method of data handling networks (GMDH) are adopted and evaluated for shear strength prediction of both FRP-reinforced concrete members with and without stirrups. Input parameters considered for the GMDH are altogether 12 influential geometrical and mechanical parameters. Two available and very recently collected comprehensive datasets containing 112 and 175 data samples are used to develop new models for two cases with and without shear reinforcement, respectively. The proposed GMDH models are compared with several codes of practice. An artificial neural network (ANN) model and an ANFIS based model are also developed using the same databases to further assessment of GMDH. The accuracy of the developed models is evaluated by statistical error parameters. The results show that the GMDH outperforms other models and successfully can be used as a practical and effective tool for shear strength prediction of members without stirrups ($R^2=0.94$) and with stirrups ($R^2=0.95$). Furthermore, the relative importance and influence of input parameters in the prediction of shear capacity of reinforced concrete members are evaluated through parametric and sensitivity analyses.

Analysis and performance of offshore platforms in hurricanes

  • Kareem, Ahsan;Kijewski, Tracy;Smith, Charles E.
    • Wind and Structures
    • /
    • v.2 no.1
    • /
    • pp.1-23
    • /
    • 1999
  • Wind effects are critical considerations in the design of topside structures, overall structural systems, or both, depending on the water depth and type of offshore platform. The reliable design of these facilities for oil fields in regions of hostile environment can only be assured through better understanding of the environmental load effects and enhanced response prediction capabilities. This paper summarizes the analysis and performance of offshore platforms under extreme wind loads, including the quantification of wind load effects with focus on wind field characteristics, steady and unsteady loads, gust loading factors, application of wind tunnel tests, and the provisions of the American Petroleum Institute Recommended Practice 2A - Working Stress Design (API RP 2A-WSD) for the construction of offshore structures under the action of wind. A survey of the performance of platforms and satellite structures is provided, and failure mechanisms concerning different damage scenarios during Hurricane Andrew are examined. Guidelines and provisions for improving analysis and design of structures are addressed.

An Overview of the ICF's Use in Korea

  • Lee, Haejung;Song, Jumin
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.5
    • /
    • pp.356-363
    • /
    • 2015
  • Purpose: The purpose of this study was to investigate the overview of the use of the ICF in Korea. Methods: An integrative literature review from its publication in 2001 to May, 2015 was conducted; studies published from 2001 to May, 2015 were searched using RISS, KISS, DBpia, KoreaMed, PubMed, and ISI databases. For inclusion in the review, a study had to be published as a scientific article, must have participation of Korean researchers and developed in Korea, and should provide use of ICF. Results: A total of 108 publications were identified, and 89 studies met the inclusion criteria. Most eligible studies were related to clinical fields (n=41) and areas with the disabled (n=32). Interestingly, several studies showed how to use and/or adapt ICF in clinical practice e.g. reviews and case studies, whereas in the area of the disabled, descriptive studies reported ICF concepts comparing with the current disability policies and laws in Korea. The usage of ICF was found to be at various levels: introducing the ICF concept and model, collecting data using the ICF checklist, coresets, as well as ICF codes itself and presenting results in the ICF framework, developing measurement tools based on ICF concepts. Conclusion: Since introduction of the ICF in 2001, the use of the ICF in Korea has increased in different professionals as well as in levels of its applications.

Concurrent flexural strength and deformability design of high-performance concrete beams

  • Ho, J.C.M.;Zhou, K.J.H.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.541-562
    • /
    • 2011
  • In the design of earthquake resistant reinforced concrete (RC) structures, both flexural strength and deformability need to be considered. However, in almost all existing RC design codes, the design of flexural strength and deformability of RC beams are separated and independent on each other. Therefore, the pros and cons of using high-performance materials on the flexural performance of RC beams are not revealed. From the theoretical results obtained in a previous study on flexural deformability of RC beams, it is seen that the critical design factors such as degree of reinforcement, concrete/steel yield strength and confining pressure would simultaneously affect the flexural strength and deformability. To study the effects of these factors, the previous theoretical results are presented in various charts plotting flexural strength against deformability. Using these charts, a "concurrent flexural strength and deformability design" that would allow structural engineers to consider simultaneously both strength and deformability requirements is developed. For application in real construction practice where concrete strength is usually prescribed, a simpler method of determining the maximum and minimum limits of degree of reinforcement for a particular pair of strength and deformability demand is proposed. Numerical examples are presented to illustrate the application of both design methods.

Behavior and design of perforated steel storage rack columns under axial compression

  • El Kadi, Bassel;Kiymaz, G.
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1259-1277
    • /
    • 2015
  • The present study is focused on the behavior and design of perforated steel storage rack columns under axial compression. These columns may exhibit different types of behavior and levels of strength owing to their peculiar features including their complex cross-section forms and perforations along the member. In the present codes of practice, the design of these columns is carried out using analytical formulas which are supported by experimental tests described in the relevant code document. Recently proposed analytical approaches are used to estimate the load carrying capacity of axially compressed steel storage rack columns. Experimental and numerical studies were carried out to verify the proposed approaches. The experimental study includes compression tests done on members of different lengths, but of the same cross-section. A comparison between the analytical and the experimental results is presented to identify the accuracy of the recently proposed analytical approaches. The proposed approach includes modifications in the Direct Strength Method to include the effects of perforations (the so-called reduced thickness approach). CUFSM and CUTWP software programs are used to calculate the elastic buckling parameters of the studied members. Results from experimental and analytical studies compared very well. This indicates the validity of the recently proposed approaches for predicting the ultimate strength of steel storage rack columns.

Unified equivalent frame method for flat plate slab structures under combined gravity and lateral loads - Part 1: derivation

  • Kim, Kang Su;Choi, Seung-Ho;Ju, Hyunjin;Lee, Deuck Hang;Lee, Jae-Yeon;Shin, Myoungsu
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.719-733
    • /
    • 2014
  • The equivalent frame method (EFM) is widely used for the design of two-way reinforced concrete slab structures, and current design codes of practice permit the application of the EFM in analyzing the flat plate slab structures under gravity and lateral loads. The EFM was, however, originally developed for the flat plate structures subjected to gravity load, which is not suitable for lateral loading case. Therefore, this study, the first part of series research paper, proposed the structural analysis method for the flat plate slab structures under the combined gravity and lateral loads, which is named as the unified equivalent frame method (UEFM). In the proposed method, some portion of rotation induced in the torsional member is distributed to the flexibility of the equivalent columns, and the remaining portion is contributed to that of the equivalent slabs. In the consecutive companion paper, the proposed UEFM is verified by comparing with test results of multi-span flat plate structures. Also, a simplified nonlinear push-over analysis method is proposed, and verified by comparing to test results.

Seismic Performance of High-rise Moment-resisting RC Frame Structures with Vertical Setback

  • Jiang, Huanjun;Huang, Youlu;Li, Wannian
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.307-314
    • /
    • 2020
  • High-rise buildings with vertical setback are widely used in practice. From the field investigation of the past earthquakes, it was found that such kind of vertically irregular high-rise building structures easily suffer severe damage during strong earthquakes. This paper presents an extensive study on the earthquake responses of moment-resisting frame structures (MFS) popularly applied in high-rise buildings with vertical setback. Four groups of MFS are designed, including three groups of structures with vertical setback and one group of structures with the lateral stiffness varying along the building height but without vertical setback. The numerical models of the structures are established, and the time history analysis of the structures under different levels of earthquakes is conducted. The earthquake responses of the structures are compared. The influence of the ratio between the horizontal setback dimension and the previous plan dimension, the eccentricity of setback, and the position where the setback occurs on the seismic performance of structures is studied. The rationality of the provisions for the structures with vertical setback specified in the current design codes is checked by the findings from this study.