• Title/Summary/Keyword: codebook selection

Search Result 23, Processing Time 0.02 seconds

A Single-layer Differential Codebook Design Over Pedestrian Closed-loop MISO System (보행자 채널의 폐루프 MISO 시스템에서 적응형 단일계층 차분 코드북 설계)

  • Kim, Young-Ju
    • Journal of Broadcast Engineering
    • /
    • v.24 no.4
    • /
    • pp.613-622
    • /
    • 2019
  • A differential codebook design method using wireless channel's temporal correlation is proposed over closed loop multiple-input single-output (MISO) system. The single layer codewords in a codebook are selected among a set of phase elements. In the conventional codeword selection rule, codewords are assumed to be on a spherical cap and sine formula was used. In this paper, however, a new method using Pythagoras formula is employed to simplify computational complexity. Also, an adaptive differential codebook selection is adopted to enhance performance. Monte-Carlo simulations demonstrate that the proposed codebook is superior to the conventional ones.

Research on Per-cell Codebook based Channel Quantization for CoMP Transmission

  • Hu, Zhirui;Feng, Chunyan;Zhang, Tiankui;Gao, Qiubin;Sun, Shaohui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.1828-1847
    • /
    • 2014
  • Coordinated multi-point (CoMP) transmission has been regarded as a potential technology for LTE-Advanced. In frequency division duplexing systems, channel quantization is applied for reporting channel state information (CSI). Considering the dynamic number of cooperation base stations (BSs), asymmetry feature of CoMP channels and high searching complexity, simply increasing the size of the codebook used in traditional multiple antenna systems to quantize the global CSI of CoMP systems directly is infeasible. Per-cell codebook based channel quantization to quantize local CSI for each BS separately is an effective method. In this paper, the theoretical upper bounds of system throughput are derived for two codeword selection schemes, independent codeword selection (ICS) and joint codeword selection (JCS), respectively. The feedback overhead and selection complexity of these two schemes are analyzed. In the simulation, the system throughput of ICS and JCS is compared. Both analysis and simulation results show that JCS has a better tradeoff between system throughput and feedback overhead. The ICS has obvious advantage in complexity, but it needs additional phase information (PI) feedback for obtaining the approximate system throughput with JCS. Under the same number of feedback bits constraint, allocating the number of bits for channel direction information (CDI) and PI quantization can increase the system throughput, but ICS is still inferior to JCS. Based on theoretical analysis and simulation results, some recommendations are given with regard to the application of each scheme respectively.

Codebook based Direct Vector Quantization of MIMO Channel Matrix with Channel Normalization

  • Hui, Bing;Chang, KyungHi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.3
    • /
    • pp.155-157
    • /
    • 2014
  • In this paper, a novel codebook generation strategy is proposed. With the given codebooks, two codeword selection procedures are proposed and analyzed for generating the quantized multiple-input multiple-output (MIMO) channel state information (CSI). Furthermore, three different quantization and normalization strategies are analyzed. The simulation results suggest that the proposed 'quantized channel generation method 2' is the best strategy to reduce the quantization and normalization errors to generate the final quantized MIMO CSI.

Novel SINR-Based User Selection for an MU-MIMO System with Limited Feedback

  • Kum, Donghyun;Kang, Daegeun;Choi, Seungwon
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.62-68
    • /
    • 2014
  • This paper presents a novel user selection method based on the signal-to-interference-plus-noise ratio (SINR), which is approximated using limited feedback data at the base stations (BSs) of multiple user multiple-input multiple-output (MU-MIMO) systems. In the proposed system, the codebook vector index, the quantization error obtained from the correlation between the measured channel and the codebook vector, and the measured value of the largest singular value are fed back from each user to the BS. The proposed method not only generates precoding vectors that are orthogonal to the precoding vectors of the previously selected users and are highly correlated with the codebook vector of each user but also adopts the quantization error in approximating the SINR, which eventually provides a significantly more accurate SINR than the conventional SINR-based user selection techniques. Computer simulations show that the proposed method enhances the sum rate of the conventional SINR-based methods by at least 2.4 (2.62) bps/Hz when the number of transmit antennas and number of receive antennas per user terminal is 4 and 1(2), respectively, with 100 candidate users and an SNR of 30 dB.

Dynamic Feedback Selection Scheme for User Scheduling in Multi-user MIMO Systems (다중 사용자 MIMO 시스템의 사용자 스케쥴링을 위한 동적 피드백 선택 기법)

  • Kim, I-Cheon;Kang, Chung G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.646-652
    • /
    • 2015
  • In this paper, the system-level performance is evaluated for the feedback scheme on the pre-coding matrix index (PMI) and channel quality indication (CQI), which are required for user selection in the multi-user MIMO system. Our analysis demonstrates that the number of users, the number of selected users, and codebook size are the key factors that govern the performance of the best companion grouping (BCG)-based user scheduling. Accordingly, we have confirmed that the probability of forming the co-scheduled user group is determined by these factors, which implies that the number of PMI's and codebook size can be dynamically determined so as to maximize the average system throughput as the number of users varies in the cell.

A VQ Codebook Design Based on Phonetic Distribution for Distributed Speech Recognition (분산 음성인식 시스템의 성능향상을 위한 음소 빈도 비율에 기반한 VQ 코드북 설계)

  • Oh Yoo-Rhee;Yoon Jae-Sam;Lee Gil-Ho;Kim Hong-Kook;Ryu Chang-Sun;Koo Myoung-Wa
    • Proceedings of the KSPS conference
    • /
    • 2006.05a
    • /
    • pp.37-40
    • /
    • 2006
  • In this paper, we propose a VQ codebook design of speech recognition feature parameters in order to improve the performance of a distributed speech recognition system. For the context-dependent HMMs, a VQ codebook should be correlated with phonetic distributions in the training data for HMMs. Thus, we focus on a selection method of training data based on phonetic distribution instead of using all the training data for an efficient VQ codebook design. From the speech recognition experiments using the Aurora 4 database, the distributed speech recognition system employing a VQ codebook designed by the proposed method reduced the word error rate (WER) by 10% when compared with that using a VQ codebook trained with the whole training data.

  • PDF

Cooperative Limited Feedback Precoding in Interference-Limited MIMO Networks (간섭 제한적인 MIMO 환경에서의 협력적인 제한적 피드백 프리코딩)

  • Yoon, Jung-Min;Lee, Jong-Ho;Kwak, Young-Woo;Choi, Jeong-Sik;Kim, Seong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5C
    • /
    • pp.276-285
    • /
    • 2011
  • In this paper, we propose new cooperative precoder selection technique for interference limited MIMO networks. Our proposed method gives weighting to precoders in the codebook according to each precoder's performance priority. By applying our proposed method to precoder selection sequence, performance of entire system can be improved in terms of sumrate, stability, and feedback rate.

Adaptive coding algorithm using quantizer vector codebook in HDTV (양자화기 벡터 코드북을 이용한 HDTV 영상 적응 부호화)

  • 김익환;최진수;박광춘;박길흠;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.10
    • /
    • pp.130-139
    • /
    • 1994
  • Video compression algorithms are based on removing spatial and/or temproal redundancy inherent in image sequences by predictive(DPCM) encoding, transform encoding, or a combination of predictive and transform encoding. In this paper, each 8$\times$8 DCT coefficient of DFD(displaced frame difference) is adaptively quantized by one of the four quantizers depending on total distortion level, which is determined by characteristics of HVS(human visual system) and buffer status. Therefore, the number of possible quantizer selection vectors(patterns) is 4$^{64}$. If this vectors are coded, toomany bits are required. Thus, the quantizer selection vectors are limited to 2048 for Y and 512 for each U, V by the proposed method using SWAD(sum of weighted absolute difference) for discriminating vectors. The computer simulation results, using the codebook vectors which are made by the proposed method, show that the subjective and objective image quality (PSNR) are goor with the limited bit allocation. (17Mbps)

  • PDF

Parameter Design for COBF Based on Kappa-factor Channel Model (Kappa-factor 채널모델에 기반을 둔 최적의 코드북 기반 Opportunistic Beamformer 파라미터 디자인)

  • Kang, Ji-Won;Kwon, Dong-Seung;Lee, Chung-Yong;Hwang, Young-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.20-25
    • /
    • 2008
  • Codebook-based opportunistic beamforming (COBF) technique provides a beam selection diversity to the conventional opportunistic beamforming. In this paper, we design the random matrix and codebook for the COBF technique based on a kappa-factor channel model. Applying the proposed design to the COBF, nearly optimal beams are generated. Therefore, the COBF shows an outstanding performance without regard to the channel correlation related to the kappa-factor.

MIMO Precoding in 802.16e WiMAX

  • Li, Qinghua;Lin, Xintian Eddie;Zhang, Jianzhong (Charlie)
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.141-149
    • /
    • 2007
  • Multiple-input multiple-output (MIMO) transmit pre-coding/beamforming can significantly improve system spectral efficiency. However, several obstacles prevent precoding from wide deployment in early wireless networks: The significant feedback overhead, performance degradation due to feedback delay, and the large storage requirement at the mobile devices. In this paper, we propose a precoding method that addresses these issues. In this approach, only 3 or 6 bits feedback is needed to select a precoding matrix from a codebook. There are fifteen codebooks, each corresponding to a unique combination of antenna configuration (up to 4 antennas) and codebook size. Small codebooks are prestored and large codebooks are efficiently computed from the prestored codebook, modified Hochwald method and Householder reflection. Finally, the feedback delay is compensated by channel prediction. The scheme is validated by simulations and we have observed significant gains comparing to space-time coding and antenna selection. This solution was adopted as a part of the IEEE 802.16e specification in 2005.