• Title/Summary/Keyword: code-provisions

Search Result 295, Processing Time 0.029 seconds

Torsional effects in symmetrical steel buckling restrained braced frames: evaluation of seismic design provisions

  • Roy, Jonathan;Tremblay, Robert;Leger, Pierre
    • Earthquakes and Structures
    • /
    • v.8 no.2
    • /
    • pp.423-442
    • /
    • 2015
  • The effects of accidental eccentricity on the seismic response of four-storey steel buildings laterally stabilized by buckling restrained braced frames are studied. The structures have a square, symmetrical footprint, without inherent eccentricity between the center of lateral resistance (CR) and the center of mass (CM). The position of the bracing bents in the buildings was varied to obtain three different levels of torsional sensitivity: low, intermediate and high. The structures were designed in accordance with the seismic design provisions of the 2010 National Building Code of Canada (NBCC). Three different analysis methods were used to account for accidental eccentricity in design: (1) Equivalent Static Procedure with static in-plane torsional moments assuming a mass eccentricity of 10% of the building dimension (ESP); (2) Response Spectrum Analysis with static torsional moments based on 10% of the building dimension (RSA-10); and (3) Response Spectrum Analysis with the CM being displaced by 5% of the building dimension (RSA-5). Time history analyses were performed under a set of eleven two-component historical records. The analyses showed that the ESP and RSA-10 methods can give appropriate results for all three levels of torsional sensitivity. When using the RSA-5 method, adequate performance was also achieved for the low and intermediate torsional sensitivity cases, but the method led to excessive displacements (5-10% storey drifts), near collapse state, for the highly torsionally sensitive structures. These results support the current provisions of NBCC 2010.

Flexural Behaviors of Precast Prestressed Rectangular and Inverted-tee Concrete Beams for Buildings

  • Yu, Sung-Yong
    • KCI Concrete Journal
    • /
    • v.14 no.1
    • /
    • pp.36-42
    • /
    • 2002
  • Flexural behaviors of the two typical precast beam sections (inverted tee and rectangular) for buildings were investigated and compared. The height of web in the inverted tee beam was generally less than half of beam depth to be adapted to that of the nib in the ends of double-tee where the total building height limited considerably. The inverted-tee beams were designed for a parking live load - 500kgf/$m^2$ and a market - 1,200kgf/$m^2$ from the currently used typical shape of a domestic building site in Korea. The area and bottom dimension of rectangular beams were the same as those of inverted tee beams. These woo beams were also reinforced with a similar strength. following results were obtained from the studies above; 1) the rectangular beam is simpler in production, transportation, and erection, and more economic than the inverted tee beam in the construction test for these two beams with a same dimension and a similar strength, 2) all of the beams considered in the tests were generally failed in values close to those of the strength requirements in ACI Provisions. The ratios of test result to calculated value are averaged to 1.04. One rectangular and one inverted tee beams failed in a value only 2-3% larger than the estimated volue of the Strength Design Methool the results of the Strain Compatibility Method wire slightly more accurate than those of the Strength Design Method, 4) the maximum deflections of all of the beams under the full service loads were less than those of the allowable limit in ACI Code Provisions. The rectangular beams experienced more deflection then inverted tee in the same loading condition and failed with more deflection, and 5) the rectangular and inverted tee beams showed good performances under the condition of service and ultimate loads. However, one inverted tee beams with fm span developed an initial flexural crackings under 88% of the full service load even though they designed to satisfy the ACI tensile stress limit provisions.

  • PDF

Seismic Performance Evaluation of Special Moment Steel Frames with Torsional Irregularities - I Seismic Design (비틀림 비정형을 갖는 철골특수모멘트골조의 내진성능평가 - I 내진설계)

  • Han, Sang Whan;Kim, Tae O;Ha, Seong Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.5
    • /
    • pp.361-368
    • /
    • 2017
  • ASCE 7-10 defines the torsional irregular structure as the one that has large torsional responses caused by the eccentricity. The code requires that these structures should be designed abide by the torsional provisions. This study evaluates the influence of torsional provisions on the performance of the designed multiple steel moment frames with different eccentricity. In this study, 3D response history analyses are performed. The results show that the moment frame design according to the standard with torsional irregularity provisions showed larger performance as the eccentricity increased and the distribution of plastic hinges similarly to orthopedic structures.

Experiment Study on the Flexural-Axial Capacity of Steel-Concrete Composite Column composed of Non-Compact Section (비조밀단면을 가진 SC 합성 기둥의 휨-압축 내력에 관한 실험 연구)

  • Oh, Myoung Ho;Kim, Bum Rae;Kim, Myeong Han;Kim, Dae Joong;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.431-438
    • /
    • 2005
  • A steel-concrete composite column is a recently developed composite system in which the two opposite flanges of the H-shape section are connected by welded links, and the vacant space enclosed by the flanges, web, and links is filled with concrete. Previous experiments on the SC composite column were performed to evaluate its compression and bending and shear strengths, respectively, and they showed fairly good results. In addition to thesestudies, it may be necessary to evaluate the flexural-axial capacity of an SC composite column, because itscolumn members are generally subjected to axial force and bending moment at the same time. In this study, the bending strength of an SC composite column subjected to axial compression force was investigated experimentally. The results of the study showed that the AISC-LRFD provisions representedexcessively low values compared with those of the ACI, Eurocode-4, and Japan Code provisions. The Eurocode-4 provisions represented reasonable evaluations of the strength of the SC composite column composed of a non-compact section.

Tests on composite slabs and evaluation of relevant Eurocode 4 provisions

  • Salonikios, Thomas N.;Sextos, Anastasios G.;Kappos, Andreas J.
    • Steel and Composite Structures
    • /
    • v.13 no.6
    • /
    • pp.571-586
    • /
    • 2012
  • The paper addresses some key issues related to the design of composite slabs with cold-formed profiled steel sheets. An experimental programme is first presented, involving six composite slab specimens tested with a view to evaluating Eurocode 4 (EC4) provisions on testing of composite slabs. In four specimens, the EC4-prescribed 5000 load cycles were applied using different load ranges resulting from alternative interpretations of the reference load $W_t$. Although the rationale of the application of cyclic loading is to induce loss of chemical bond between the concrete plate and the steel sheet, no such loss was noted in the tests for either interpretation of the range of load cycles. Using the recorded response of the specimens the values of factors m and k (related to interface shear transfer in the composite slab) were determined for the specific steel sheet used in the tests, on the basis of three alternative interpretations of the related EC4 provisions. The test results confirmed the need for a more unambiguous description of the m-k test and its interpretation in a future edition of the Code, as well as for an increase in the load amplitude range to be used in the cyclic loading tests, to make sure that the intended loss of bond between the concrete slab and the steel sheet is actually reached. The study also included the development of a special-purpose software that facilitates design of composite slabs; a parametric investigation of the importance of m-k values in slab design is presented in the last part of the paper.

Site Classification and Design Response Spectra for Seismic Code Provisions - (I) Database and Site Response Analyses (내진설계기준의 지반분류체계 및 설계응답스펙트럼 개선을 위한 연구 - (I) 데이터베이스 및 지반응답해석)

  • Cho, Hyung Ik;Satish, Manandhar;Kim, Dong Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.235-243
    • /
    • 2016
  • Korea is part of a region of low to moderate seismicity located inside the Eurasian plate with bedrock located at depths less than 30 m. However, the spectral acceleration obtained from site response analyses based on the geologic conditions of inland areas of the Korean peninsula are significantly different from the current Korean seismic code. Therefore, suitable site classification scheme and design response spectra based on local site conditions in the Korean peninsula are required to produce reliable estimates of earthquake ground motion. In this study, site-specific response analyses were performed at more than 300 sites with at least 100 sites at each site categories of $S_C$, $S_D$, and $S_E$ as defined in the current seismic code in Korea. The process of creating a huge database of input parameters - such as shear wave velocity profiles, normalized shear modulus reduction curves, damping curves, and input earthquake motions - for site response analyses were described. The response spectra and site coefficients obtained from site response analyses were compared with those proposed for the site categories in the current code. Problems with the current seismic design code were subsequently discussed, and the development and verifications of new site classification system and corresponding design response spectra are detailed in companion papers (II-development of new site categories and design response spectra and III-Verifications)

A study on applying of the ITC-Hulls & ISM Code for the Accident of Foundering Ship (선박침몰사고에 따른 ITC약관 및 ISM Code 적용에 관한 연구)

  • Kim, Dae-Hae;Kim, Se-Won
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.117-118
    • /
    • 2007
  • This paper was provided to apply the ITC-Hulls Clauses & ISM Code for the accident of sunken ship which was occurred by seamen's barratry. For the causes of the sunken accident, the underwriter insisted that shipowner submerged the vessel intentionally for the purpose of the insured amounts, while shipowner protests that the ship was submerged because of crews faults. In this connection, the judge sentenced that this accident was caused by humans errors as the Provisions of 6.2.4 of ITC-Hulls, however shipowner is responsible for hiring onboard qualified seafarers and carrying out the due diligence for performing ISM Code for ensuring ship's safety and seaworthiness.

  • PDF

A study on applying of the ITC-Hulls & ISM Code for the Accident of the Foundering Ship (선박침몰사고에 따른 ITC 협회약관 및 ISM Code 적용에 관한 연구)

  • Kim, Se-Won;Kim, Dae-Hae
    • Journal of Navigation and Port Research
    • /
    • v.32 no.3
    • /
    • pp.229-235
    • /
    • 2008
  • This paper was provided to apply the ITC-Hulls Clauses & ISM Code for the accident of sunken ship which was occurred by seamen's barratry. For the causes of the sunken accident, the underwriter insisted toot shipowner submerged the vessel intentionally for the purpose of the insured amounts, while shipowner protests toot the ship was submerged because of crews faults. In this connection, the judge sentenced toot this accident was caused by humans errors as the Provisions of 6.2.4 of ITC-Hulls, however shipowner is responsible for hiring onboard qualified seafarers and carrying out the due diligence for performing ISM Code for ensuring ship's safety and seaworthiness.

An Investigation of Reliability and Safety Factors in RC Flexural Members Designed by Current WSD Standard Code (현행(現行) 허용응력설계법(許容應力設計法)으로 설계(設計)되는 RC 휨부재(部材)의 신뢰성(信賴性)과 안전율(安全率) 고찰(考察))

  • Shin, Hyun Mook;Cho, Hyo Nam;Chung, Hwan Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.33-42
    • /
    • 1981
  • Current standard code for R.C. design consists of two conventional design parts, so called WSD and USD, which are based on ACI 318-63 and 318-71 code provisions. The safety factors of our WSD and USD design criteria which are taken primarily from ACI 318-63 code are considered to be not appropriate compared to out country's design and construction practices. Furthermore, even the ACI safety factors are not determined from probabilistic study but merely from experiences and practices. This study investigates the safety level of R.C. flexural members designed by the current WSD safety provisions based on Second Moment Reliability theory, and proposes a rational but efficient way of determining the nominal safety factors and the associated flexural allowable stresses of steel bars and concretes in order to provide a consistent level of target reliability. Cornell's Mean First-Order Second Moment Method formulae by a log normal transformation of resistance and load output variables are adopted as the reliability analysis method for this study. The compressive allowable stress formulae are derived by a unique approach in which the balanced steel ratios of the resulting design are chosen to be the corresponding under-reinforced sections designed by strength design method with an optimum reinforcing ratio. The target reliability index for the safety provisions are considered to be ${\beta}=4$ that is well suited for our level of construction and design practices. From a series of numerical applications to investigate the safety and reliability of R.C. flexural members designed by current WSD code, it has been found that the design based on WSD provision results in uneconomical design because of unusual and inconsistent reliability. A rational set of reliability based safety factors and allowable stress of steel bars and concrete for flexural members is proposed by providing the appropriate target reliability ${\beta}=4$.

  • PDF

Seismic Performance Evaluation of RC Bridge Piers with Limited Ductility by the Pseudo-Dynamic Test (한정연성 철근콘크리트 교각의 유사동적 실험에 의한 내진 성능 평가)

  • Chung, Young-Soo;Park, Chang-Kyu;Park, Jin-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.705-714
    • /
    • 2003
  • Even though Korean peninsula is located in regions of moderate seismic risks, current seismic design provisions of the roadway bridge design code have adopted the AASHTO code which is based on the requirements for high seismic regions. The objective of this research is to investigate the seismic performance of circular reinforced concrete (RC) bridge piers with limited ductility, which may be desirable in low or moderate seismic regions, such as in Korea. Four test specimens were designed and constructed. The reference specimen was designed with longitudinal steel ratio as 1.01% and the confinement reinforcement ratio as 0.13% without considering earthquake, and three other test specimens were designed in accordance with a limited-ductility concept as 0.3% for the confinement steel ratio. This confinement ratio is 0.32 times of minimum lateral reinforcement specified in current seismic design provisions, and 2.3 times of lateral reinforcement required in nonseismic design provisions. The pseudo-dynamic test was carried out to evaluate the seismic performance of full-scale specimens in size of 1.2m diameter and 4.8m height. Judging from the experiment, the reference specimen was not satisfactory for the demand displacement ductility ${\mu}$=5.0, but three limited-ductility specimens appeared to have the displacement ductility of more than 5.