• Title/Summary/Keyword: code validation

Search Result 452, Processing Time 0.027 seconds

COMPONENT AND SYSTEM MULTI-SCALE DIRECT-COUPLED CODE IMPLEMENTATION USING CUPID AND MARS CODES (CUPID 코드와 MARS 코드를 이용한 기기/계통 다중스케일 연계 해석 코드 구현)

  • Park, I.K.
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.89-97
    • /
    • 2016
  • In this study, direct code coupling, in which two codes share a single flow field, was conducted using 3-dimensional high resolution thermal hydraulics code, CUPID and 1-dimensional system analysis code, MARS. This approach provide the merit to use versatile capability of MARS for nuclear power plants and 3-dimensional T/H analysis capability of CUPID. Numerical Method to directly couple CUPID and MARS was described in this paper. The straight flow and manometer flow oscillation were calculated to verify conservation of coupled CUPID/MARS code in mass, momentum, and energy. This verification calculations indicates that the CUPID/MARS is coupled appropriately in numerical aspect and the coupled code can be applied to nuclear reactor thermal hydraulics after validation against integral transient experiments.

Modeling cryptographic algorithms validation and developing block ciphers with electronic code book for a control system at nuclear power plants

  • JunYoung Son;Taewoo Tak;Hahm Inhye
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.25-36
    • /
    • 2023
  • Nuclear power plants have recognized the importance of nuclear cybersecurity. Based on regulatory guidelines and security-related standards issued by regulatory agencies around the world including IAEA, NRC, and KINAC, nuclear operating organizations and related systems manufacturing organizations, design companies, and regulatory agencies are considering methods to prepare for nuclear cybersecurity. Cryptographic algorithms have to be developed and applied in order to meet nuclear cybersecurity requirements. This paper presents methodologies for validating cryptographic algorithms that should be continuously applied at the critical control system of I&C in NPPs. Through the proposed schemes, validation programs are developed in the PLC, which is a critical system of a NPP's I&C, and the validation program is verified through simulation results. Since the development of a cryptographic algorithm validation program for critical digital systems of NPPs has not been carried out, the methodologies proposed in this paper could provide guidelines for Cryptographic Module Validation Modeling for Control Systems in NPPs. In particular, among several CMVP, specific testing techniques for ECB mode-based block ciphers are introduced with program codes and validation models.

VALIDATION OF NUMERICAL METHODS TO CALCULATE BYPASS FLOW IN A PRISMATIC GAS-COOLED REACTOR CORE

  • Tak, Nam-Il;Kim, Min-Hwan;Lim, Hong-Sik;Noh, Jae Man;Drzewiecki, Timothy J.;Seker, Volkan;Downar, Thomas J.;Kelly, Joseph
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.745-752
    • /
    • 2013
  • For thermo-fluid and safety analyses of a High Temperature Gas-cooled Reactor (HTGR), intensive efforts are in progress in the developments of the GAMMA+ code of Korea Atomic Energy Research Institute (KAERI) and the AGREE code of the University of Michigan (U of M). One of the important requirements for GAMMA+ and AGREE is an accurate modeling capability of a bypass flow in a prismatic core. Recently, a series of air experiments were performed at Seoul National University (SNU) in order to understand bypass flow behavior and generate an experimental database for the validation of computer codes. The main objective of the present work is to validate the GAMMA+ and AGREE codes using the experimental data published by SNU. The numerical results of the two codes were compared with the measured data. A good agreement was found between the calculations and the measurement. It was concluded that GAMMA+ and AGREE can reliably simulate the bypass flow behavior in a prismatic core.

Study on Selftest Requirements in Cryptographic Module Validation Program with FIPS-OpenSSL Source Code Analysis (FIPS-OpenSSL 코드 분석을 통한 암호모듈 자가시험 보안요구사항 분석)

  • Seo, Seog Chung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.5
    • /
    • pp.985-996
    • /
    • 2019
  • This paper analyzes the source code of FIPS-OpenSSL cryptographic module approved as FIPS cryptographic module in USA and shows how the selftest requirements are implemented as software cryptographic library with respect to pre-operational test and conditional tests. Even though FIPS-OpenSSL follows FIPS 140-2 standard, lots of security requirements are similar between FIPS 140-2 and Korean cryptographic module validation standards. Therefore, analysis from this paper contributes to help Korean cryptographic module vendors develop correct and secure selftest functions on their own cryptographic modules, which results in reducing the test period.

MULTI-SCALE THERMAL-HYDRAULIC ANALYSIS OF PWRS USING THE CUPID CODE

  • Yoon, Han Young;Cho, Hyoung Kyu;Lee, Jae Ryong;Park, Ik Kyu;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.831-846
    • /
    • 2012
  • KAERI has developed a two-phase CFD code, CUPID, for a refined calculation of transient two-phase flows related to nuclear reactor thermal hydraulics, and its numerical models have been verified in previous studies. In this paper, the CUPID code is validated against experiments on the downcomer boiling and moderator flow in a Calandria vessel. Physical models relevant to the validation are discussed. Thereafter, multi-scale thermal hydraulic analyses using the CUPID code are introduced. At first, a component-scale calculation for the passive condensate cooling tank (PCCT) of the PASCAL experiment is linked to the CFD-scale calculation for local boiling heat transfer outside the heat exchanger tube. Next, the Rossendorf coolant mixing (ROCOM) test is analyzed by using the CUPID code, which is implicitly coupled with a system-scale code, MARS.

SIMULATION OF THE DESIGN METHODOLOGY FOR HIGH PERFORMANCE AND EFFICIENT CAVITATOR (측류유동을 고려한 실린더 주위의 캐비테이션 유동 현상 해석)

  • Lee, B.W.;Park, S.I.;Park, W.G.;Lee, K.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.177-184
    • /
    • 2009
  • Cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has focused on the simulation of cavitating flow past cylinders with strong side flows. The governing equation is the Navier-Stokes equation based on the homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved liquid and vapor phase, separately. An implicit dual time and preconditioning method are employed for computational analysis. For the code validation, the results from the present solver have been compared with experiments and other numerical results. A fairly good agreement with the experimental data and other numerical results have been obtained. After the code validation, the strong side flow was applied to include the wake flow effects of the submarine or ocean tide.

  • PDF

COMPREHENSIVE SCALING METHOD WITH VALIDATION FOR APPLICATION TO SB-LOCAS OF A PASSIVE PWR

  • Lee, Sang-Il;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.263-269
    • /
    • 1996
  • A comprehensive scaling method is proposed for a scaled-down facility simulating SBLOCA in the CARR passive reactor (CP-1300). The present method consists of two stages: scaling methodology, and validation of scaling methodology and code. The present scaling methodology is based on the integral response scaling method. Through sensitivity study, the condensation of the top of the CMT is identified as one of the little-known phenomenon with high importance which should be addressed for the applicability of the code. Using the similarity of the derived scaling parameters, the major component geometries of the scaled-down facility are determined. In the case of 1/4 height and 1/100 area ratio scaling, it is found out that the power ratio is the same as the area ratio, and the present scaling methodology generates the design parameters of the scaled-down facility without any distortion.

  • PDF

SIMULATION OF CAVITATING FLOW PAST CYLINDERS WITH STRONG SIDE-FLOW (측류유동을 고려한 실린더 주위의 캐비테이션 유동 현상 해석)

  • Lee, B.W.;Park, W.G.;Lee, K.C.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.78-85
    • /
    • 2009
  • Cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has focused on the simulation of cavitating flow past cylinders with strong side flows. The governing equation is the Navier-Stokes equation based on the homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved liquid and vapor phase, separately. An implicit dual time and preconditioning method are employed for computational analysis. For the code validation, the results from the present solver have been compared with experiments and other numerical results. A fairly good agreement with the experimental data and other numerical results have been obtained. After the code validation, the strong side flow was applied to include the wake flow effects of the submarine or ocean tide.

A Pragmatic Framework for Predicting Change Prone Files Using Machine Learning Techniques with Java-based Software

  • Loveleen Kaur;Ashutosh Mishra
    • Asia pacific journal of information systems
    • /
    • v.30 no.3
    • /
    • pp.457-496
    • /
    • 2020
  • This study aims to extensively analyze the performance of various Machine Learning (ML) techniques for predicting version to version change-proneness of source code Java files. 17 object-oriented metrics have been utilized in this work for predicting change-prone files using 31 ML techniques and the framework proposed has been implemented on various consecutive releases of two Java-based software projects available as plug-ins. 10-fold and inter-release validation methods have been employed to validate the models and statistical tests provide supplementary information regarding the reliability and significance of the results. The results of experiments conducted in this article indicate that the ML techniques perform differently under the different validation settings. The results also confirm the proficiency of the selected ML techniques in lieu of developing change-proneness prediction models which could aid the software engineers in the initial stages of software development for classifying change-prone Java files of a software, in turn aiding in the trend estimation of change-proneness over future versions.

Validation of Loads Analysis for a Slowed Rotor at High Advance Ratios

  • Park, Jae-Sang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.498-511
    • /
    • 2017
  • This work conducts a validation study for loads analysis of the UH-60A slowed rotor at high advance ratios. The nonlinear flexible multibody dynamics analysis code, DYMORE II, is used with a freewake model for the rotorcraft comprehensive analysis. Wind tunnel test data of airloads and structural loads of a full-scale UH-60A slowed rotor are used for this validation study. This analysis predicts well the thrust reversal phenomenon at the advance ratio of 1.0. The section airloads such as normal forces and pitching moments and the oscillatory blade structural moments in this analysis are compared well or moderately with the measured data, although the higher harmonics components of blade torsion moments are not captured well. This validation study assesses the prediction accuracy and investigates the unique aeromechanics characteristics of a slowed rotor at high advance ratio.