• Title/Summary/Keyword: code tracking loop

Search Result 46, Processing Time 0.025 seconds

A Study for Design and Performance Improvement of the High-Sensitivity Receiver Architecture based on Global Navigation Satellite System (GNSS 기반의 고감도 수신기 아키텍처 설계 및 성능 향상에 관한 연구)

  • Park, Chi-Ho;Oh, Young-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.4
    • /
    • pp.9-21
    • /
    • 2008
  • In this paper, we propose a GNSS-based RF receiver, A high precision localization architecture, and a high sensitivity localization architecture in order to solve the satellite navigation system's problem mentioned above. The GNSS-based RF receiver model should have the structure to simultaneously receive both the conventional GPS and navigation information data of future-usable Galileo. As a result, it is constructed as the multi-band which can receive at the same time Ll band (1575.42MHz) of GPS and El band (1575.42MHz), E5A band (1207.1MHz), and E4B band (1176.45MHz) of Galileo This high precision localization architecture proposes a delay lock loop with the structure of Early_early code, Early_late code, Prompt code, Late_early code, and Late_late code other than Early code, Prompt code, and Late code which a previous delay lock loop structure has. As we suggest the delay lock loop structure of 1/4chips spacing, we successfully deal with the synchronization problem with the C/A code derived from inaccuracy of the signal received from the satellite navigation system. The synchronization problem with the C/A code causes an acquisition delay time problem of the vehicle navigation system and leads to performance reduction of the receiver. In addition, as this high sensitivity localization architecture is designed as an asymmetry structure using 20 correlators, maximizes reception amplification factor, and minimizes noise, it improves a reception rate. Satellite navigation system repeatedly transmits the same C/A code 20 times. Consequently, we propose a structure which can use all of the same C/A code. Since this has an adaptive structure and can limit(offer) the number of the correlator according to the nearby environment, it can reduce unnecessary delay time of the system. With the use of this structure, we can lower the acquisition delay time and guarantee the continuity of tracking.

Design and Experimental Validation of a Digital Predictive Controller for Variable-Speed Wind Turbine Systems

  • Babes, Badreddine;Rahmani, Lazhar;Chaoui, Abdelmadjid;Hamouda, Noureddine
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.232-241
    • /
    • 2017
  • Advanced control algorithms must be used to make wind power generation truly cost effective and reliable. In this study, we develop a new and simple control scheme that employs model predictive control (MPC), which is used in permanent magnet synchronous generators and grid-connected inverters. The proposed control law is based on two points, namely, MPC-based torque-current control loop is used for the generator-side converter to reach the maximum power point of the wind turbine, and MPC-based direct power control loop is used for the grid-side converter to satisfy the grid code and help improve system stability. Moreover, a simple prediction scheme is developed for the direct-drive wind energy conversion system (WECS) to reduce the computation burden for real-time applications. A small-scale WECS laboratory prototype is built and evaluated to verify the validity of the developed control methods. Acceptable results are obtained from the real-time implementation of the proposed MPC methods for WECS.

A Fast Synchronization System of DS Spread Spectrum Communication Using SAW Components (SAW 소자를 이용한 직접확산방식 스펙트럼확산 통신의 고속동기 시스템)

  • 박용서;안재영;안태천;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.5
    • /
    • pp.400-410
    • /
    • 1988
  • In this paper, a fast synchronization system using SAW TDL matched filter and SAW recirculation loop not only for acquisition but also tracking in the direct sequence spread spectrum communication receiver in case of low SNR was designed and its characteristics were investigated. When signal of 16dB SNR was inputed at the receiver, the PN code of the receiver could be synchronized from the extracted signal for synchronization through SAW TDL matched filter and SAM recirculation loop for 30 recirculations. And the average synchronization time of this system was calculated. From the results, we found that this synchronization system could achieve faster synchronization of PN codes in the receiver under the circumstances of low SNR than that of using only matched filter.

  • PDF

A Novel Code Tracking Scheme in Advanced Correlation Timing Offset Region for Band-Limited DS/SS System (좌부엽 상관간을 이용한 대역 제한된 직접수열 확산대역 시스템의 추적편이 완화 기법)

  • Yoo, Seung-Soo;Jung, Sang-Hyo;Yoon, Seok-Ho;Kim, Sun-Yong
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.71-72
    • /
    • 2007
  • 대역 제한된 DS/SS 시스템의 상관 함수는 최고 값이 나타나는 시점과 함께 이른 또는 늦은 상관시간 옵셋 영역에서 극소 또는 극대로 나타나는 시점을 특징점으로 갖는다. 이 가운데 이른 상관시간옵셋 영역의 상관 함수는 다중경로 신호에 의해 덜 왜곡되기 때문에 이 영역의 상관 함수를 이용해 부호 동기를 추적하여 유지할 수 있다면 EL-DLL (delay lock loop with early minus late discriminator) 보다 추적편이를 줄일 수 있다. 본 논문에 이런 특성을 이용하는 추적편이 완화 기법을 제안하고, 모의실험을 통해 성능을 알아본다.

  • PDF

Analysis of GPS Signal Acquisition Performance

  • Li, Xiaofan;Manandhar, Dinesh;Shibasaki, Ryosuke
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.229-234
    • /
    • 2006
  • Acquisition is to detect the presence of the GPS signal. Once the signal is detected, the estimated frequency and code phase are passed to a tracking loop to demodulate the navigation data. In order to detect the weak signal, multiple length of data integration is always needed. In this paper, we present five different acquisition approaches based on circular correlation and Fast Fourier Transform (FFT), using coherent as well as non-coherent integration techniques for the multiple length of collected GPS satellite signal. Moreover a general approach of determining the acquisition threshold is introduced based on noise distribution which has been proved effective, and independent of the hardware. In the end of this paper, the processing speed and acquisition gain of each method are illustrated, compared, and analyzed. The results show that coherent approach is much more time consuming compared to noncoherent approaches, and in the case of multiple length of data integration from 2ms to 8ms, the processing times consumed by the fastest non-coherent acquisition method are only 25.87% to 1.52% in a single search, and 34.76% to 1.06% in a global search of those in the coherent acquisition. However, coherent acquisition also demonstrates its better performance in the acquisition gain, and in the case of 8ms of data integration it is 4.23 to 4.41 dB higher than that in the non-coherent approaches. Finally, an applicable scheme of combining coherent and non-coherent acquisition approaches in the development of a real-time Software GPS receiver in the University of Tokyo is provided.

  • PDF

Analysis of Performance of Spoofing Detection Algorithm in GPS L1 Signal (GPS L1 기만신호 검출 알고리즘 성능 분석)

  • Kim, Taehee;Kim, Jaehoon;Lee, Sanguk
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.2
    • /
    • pp.29-35
    • /
    • 2013
  • In this paper, we investigate the type and detection methode of spoofing attack, and then analyze the performance of spoofing detection algorithm in GPS L1 signal through the simulation. Generally spoofer is different from the jammer, because the receiver can be operated and not. In case of spoofing the GPS receiver is hard to recognize the spoofing attack and can be operated normally without stopping because the spoofing signal is the mimic GPS signal. To evaluate the performance of spoofing detection algorithm, both the software based spoofing and GPS signal generator and the software based GPS receiver are implemented. In paper, we can check that spoofing signal can affect to the DLL and PLL tracking loop because code delay and doppler frequency of spoofing. The spoofing detection algorithm has been implemented using the pseudorange, signal strength and navigation solution of GPS receiver and proposed algorithm can effectively detect the spoofing signal.