• Title/Summary/Keyword: code injection

Search Result 310, Processing Time 0.024 seconds

Coupled Simulation of Common Rail Fuel Injection and Combustion Characteristics in a HSDI Diesel Engine (HSDI 디젤엔진의 연료분사계와 연소현상을 연계한 수치해석)

  • Lee, Suk-Young;Huh, Kang-Yul
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • In this study, the coupled simulation of fuel injection model and three-dimensional KIVA-3V code was tried to develop an algorism for predicting the effects of varying fuel injection parameter on the characteristics of fuel injection and emissions. The numerical simulations were performed using STAR-CD code in order to calculate the intake air flow, and the combustion characteristics is examined by KIVA-3V code linked with the conditional moment closure(CMC) model to predict mean turbulent reaction rate. Parametric investigation with respect to twelve relevant injection parameters shows that appropriate modification of control chamber orifice diameter, needle valve spring constant and nozzle chamber orifice diameter can significantly reduce NOx and soot emissions. Consequently, it is needed to optimize the fuel injection system to reduce the specific emissions such as NOx and soot.

A Reusable SQL Injection Detection Method for Java Web Applications

  • He, Chengwan;He, Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2576-2590
    • /
    • 2020
  • The fundamental reason why most SQL injection detection methods are difficult to use in practice is the low reusability of the implementation code. This paper presents a reusable SQL injection detection method for Java Web applications based on AOP (Aspect-Oriented Programming) and dynamic taint analysis, which encapsulates the dynamic taint analysis processes into different aspects and establishes aspect library to realize the large-grained reuse of the code for detecting SQL injection attacks. A metamodel of aspect library is proposed, and a management tool for the aspect library is implemented. Experiments show that this method can effectively detect 7 known types of SQL injection attack such as tautologies, logically incorrect queries, union query, piggy-backed queries, stored procedures, inference query, alternate encodings and so on, and support the large-grained reuse of the code for detecting SQL injection attacks.

A Study on the Behavior Characteristics of Diesel Spray by Using a High Pressure Injection System with Common Rail Apparatus

  • Yeom, Jeong-Kuk;Hajime Fujimoto
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1371-1379
    • /
    • 2003
  • The effects of change in injection pressure on spray structure in high temperature and pressure field have been investigated. The analysis of liquid and vapor phases of injected fuel is important for emissions control of diesel engines. Therefore, this work examines the evaporating spray structure using a constant volume vessel. The injection pressure is selected as the experimental parameter, is changed from 22 MPa to 112 MPa using a high pressure injection system (ECD-U2). Also, we conducted simulation study by modified KIVA-II code. The results of simulation study are compared with experimental results. The images of liquid and vapor phase for free spray were simultaneously taken by exciplex fluorescence method. As experimental results, the vapor concentration of injected fuel is leaner due to the increase of atomization in the case of the high injection pressure than in that of the low injection pressure. The calculated results obtained by modified KIVA-II code show good agreements with experimental results.

Study on Security Weakness of Barcode Devices (바코드를 이용하는 기기에서의 보안적 취약점 탐구)

  • Park, Beom-joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.457-461
    • /
    • 2017
  • Barcode is widely being used in many places such as supermarket, cafeteria, library, etc. ISBN, Code 128, Code 39 are mainly used in barcode. Among them, Code 128 which is based on ASCII Code can transfer control letters that range from ASCII Code 0 to ASCII 32. Control letters intrinsically imply letters that are used to deliver information to peripheral devices such as a printer or communication joint, however, they play quite different roles if they are inputted on Windows. Generally, barcode devices doesn't verify input data, thus it enables people to tag any barcode that has specific control letters and execute the commands. Besides, most barcode recognition programs are using a database and they have more security weakness compared to other programs. On the basis of those reasons, I give an opinion that SQL Injection can attack barcode recognition programs through this study.

  • PDF

Numerical Study of Combustion Characteristics in CNG DI Engine using Gaseous Sphere Injection Model (기체구 분사 모델을 이용한 CNG DI 엔진의 연소특성 수치해석)

  • Choi, Mingi
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.171-177
    • /
    • 2019
  • This paper describes numerical study of combustion characteristics in CNG(compressed natural gas) DI(direct injection) engine using gaseous sphere injection model. Simulations were conducted using KIVA-3V Release 2 code. Gaseous sphere injection model, which is modified model of liquid fuel injection, was used to simulate the CNG direct injection. Until now, a very fine mesh smaller than the injector nozzle has been required to resolve the gas-jet inflow boundary. However, the gaseous sphere injection model simulates gaseous fuel injection using a coarse mesh. This model injects gaseous spheres as in liquid fuel injection and the gaseous spheres evaporate together without the latent heat of evaporation. Therefore, it does not require a very fine mesh and reduce calculation time. Combustion simulation were performed under various injection timings and injection pressures.

A Study on New Treatment Way of a Malicious Code to Use a DLL Injection Technique (DLL injection 기법을 이용하는 악성코드의 새로운 치료 방법 연구)

  • Park, Hee-Hwan;Park, Dea-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.251-258
    • /
    • 2006
  • A Malicious code is used to SMiShing disguised as finance mobile Vishing, using Phishing, Pharming mail, VoIP service etc. to capture of personal information. A Malicious code deletes in Anti-Virus Spyware removal programs, or to cure use. By the way, the Malicious cord which is parasitic as use a DLL Injection technique, and operate are Isass.exe, winlogon.exe, csrss.exe of the window operating system. Be connected to the process that you shall be certainly performed of an exe back, and a treatment does not work. A user forces voluntarily a process, and rebooting occurs, or a blue screen occurs, and Compulsory end, operating system everyone does. Propose a treatment way like a bird curing a bad voice code to use a DLL Injection technique to occur in these fatal results. Click KILL DLL since insert voluntarily an end function to Thread for a new treatment, and Injection did again the Thread which finish an action of DLL, and an end function has as control Thread, and delete. The cornerstone that the treatment wav that experimented on at these papers and a plan to solve will become a researcher of the revolutionary dimension that faced of a computer virus, and strengthen economic financial company meeting Ubiquitous Security will become.

  • PDF

A Study on the Behavior of Evaporating Diesel Spray Using LIEF Measurement and KIVA Code

  • Yeom, Jeong-Kuk;Chung, Sung-Sik;Ha, Jong-Yul;Kim, Yong-Rae;Min, Kyoung-Doug
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2310-2318
    • /
    • 2004
  • The effects of change in injection pressure on spray structure in high temperature and pressure field have been investigated. The analysis of liquid and vapor phases of injected fuel is important for emissions control of diesel engines. Therefore, this work examines the evaporating spray structure using a constant volume vessel. The injection pressure is selected as the experimental parameter, is changed from 400 bar to 800 bar by using a common rail injection system. Also, we conducted simulation study by modified KIVA-II code. The results of simulation study are compared with experimental results. The images of liquid and vapor phase for free spray were simultaneously taken by exciplex fluorescence method. As experimental results, the vapor concentration of injected fuel is leaner due to the increase of atomization in the case of the high injection pressure than in that of the low injection pressure. The calculated results obtained by modified KIVA-II code show good agreements with experimental results.

Modeling of CNG Direct Injection using Gaseous Sphere Injection Model (기체구 분사 모델을 이용한 CNG 직접분사식 인젝터 분사 수치해석 기법)

  • Choi, Mingi;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.47-52
    • /
    • 2016
  • This paper describes the modeling of CNG direct injection using gaseous sphere injection model. Simulation of CNG direct injection does not need break up and evaporation model compared to that of liquid fuel injection. And very fine mesh is needed near the injector nozzle to resolve the inflow boundary. Therefore it takes long computation time for gaseous fuel injection simulation. However, simulation of CNG direct injection could be performed with the coarse mesh using gaseous sphere injection model. This model was integrated in KIVA-3V code and RNG $k-{\varepsilon}$ turbulence model needs to be modified because this model tends to over-predict gas jet diffusion. Furthermore, we preformed experiments of gaseous fuel injection using PLIF (planar laser induced fluorescence)method. Gaseous fuel injection model was validated against experiment data. The simulation results agreed well with the experiment results. Therefore gaseous sphere injection model has the reliability about gaseous fuel direct injection. And this model was predicted well a general tendency of gaseous fuel injection.

Modeling Dynamic Behavior and Injection Characteristic of a GDI Injector (GDI 인젝터의 동적 거동과 분사 특성에 대한 모델링)

  • Lee, Kye Eun;Kim, Na Young;Cho, Young Jun;Lee, Dong Ryul;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.210-217
    • /
    • 2017
  • A gasoline direct injection engine has an intake air temperature can be lowered by the fuel vaporization in the combustion chamber increase the volume efficiency is high compression ratio. Therefore, study for injection rate and characteristics which influence mixture formation in combustion chamber is important. Movement of the injector needle has a direct effect on the injection of the fuel, such as formation of cavitation, the fuel injection rate, etc. Therefore, recent studies on the dynamic characteristics of the injector considering the movement of the needle have been reported, but it takes a lot of time and cost to experimentally confirm the movement of the needle inside the injector. In this study, AMESim, a commercial 1-D code, and Star-CCM+, a 3-D CFD code, were used to predict the dynamic performance of the injector with needle motion. In order to predict the movement of the needle under the high pressure, the result of the surface pressure distribution according to the movement of the needle was derived by using the morphing technique of flow analysis. In addition, we predicted the injection rate of the injector considering the movement of the needle in conjunction with the 1-D code. The injection rate of the injector was measured by the BOSCH's method and the results were similar to those of the simulation results. This method can predict the injection rate and injection characteristics and this result is expected to be used to predict the performance of gasoline direct injection engines with low cost and time in the future.

Analysis of Dynamic Characteristics in Two-stage Injection for CRDi Injectors Based on AMESim Environment (AMESim기반 CRDi용 인젝터의 2단분사 동적거동 특성해석)

  • Jo, In-Su;Kwon, Ji-Won;Lee, Jin-Wook
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.57-63
    • /
    • 2012
  • For reduction of CO, NOx and soot emission emitted by diesel diffusion combustion, the authors focused on injection actuator to improve fuel availability inside combustion chamber. In this study, it was investigated the internal dynamic characteristics of two-stage injection with diesel injectors with different driving type for the common rail direct injection by using the AMESim simulation code. The analysis parameter defined such as fuel pressure, injection hole's diameter and driven voltage. As the results, it was shown that the piezo-driven injector had a faster response and had better control capability than the solenoid-driven injector. It was found the piezo-driven injector can be utilized effectively as multiple injector than solenoid-driven injector.