
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 6, Jun. 2020 2576
Copyright ⓒ 2020 KSII

http://doi.org/10.3837/tiis.2020.06.014 ISSN : 1976-7277

A Reusable SQL Injection Detection
Method for Java Web Applications

Chengwan He1* and Yue He2

1 School of Computer Science and Engineering, Wuhan Institute of Technology
Wuhan, Hubei 430205 - China

[e-mail: hechengwan@hotmail.com]
2 School of Information Engineering, Wuhan University of Technology

Wuhan, Hubei 430000 - China
[e-mail: 1096853550@qq.com]

*Corresponding author: Chengwan He

Received July 29, 2019; revised March 2, 2020; accepted April 26, 2020;
published June 30, 2020

Abstract

The fundamental reason why most SQL injection detection methods are difficult to use in
practice is the low reusability of the implementation code. This paper presents a reusable SQL
injection detection method for Java Web applications based on AOP (Aspect-Oriented
Programming) and dynamic taint analysis, which encapsulates the dynamic taint analysis
processes into different aspects and establishes aspect library to realize the large-grained
reuse of the code for detecting SQL injection attacks. A metamodel of aspect library is
proposed, and a management tool for the aspect library is implemented. Experiments show
that this method can effectively detect 7 known types of SQL injection attack such as
tautologies, logically incorrect queries, union query, piggy-backed queries, stored
procedures, inference query, alternate encodings and so on, and support the large-grained
reuse of the code for detecting SQL injection attacks.

Keywords: SQL injection attack, aspect-oriented programming, taint analysis,

aspect library, metamodel

mailto:hechengwan@hotmail.com
mailto:1096853550@qq.com

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 6, June 2020 2577

1. Introduction

The increasing security of Web applications has been a challenging topic for scholars and
software developers. There are mainly the following reasons [1]: 1) Technical Challenges.
Software developers are not all security experts, and even the best-trained developers can
focus on only a few security issues at a time. 2) Aggressive Adversaries. Hackers have realized
that attacking application vulnerabilities are often the fastest and easiest way. Statistics show
that 37% of security problems occur in the application layer, and over 65% of organizations
have suffered SQL injection attacks [2]. 3) Organizational Factors. Developers and
quality assurance (QA) engineers are usually rewarded for their ability to deliver features
quickly, not for discovering and eliminating security flaws.

The above reasons indicate the following facts: 1) For most developers that are
inexperienced and have no knowledge of security programming techniques, even if the
security experts point out the program defects, there is no way to solve these security defects.
Programmers need to reuse solutions, technologies, and especially code to prevent security
threats at large granularity. 2) Application vulnerabilities are the main targets of hacker attacks,
Web applications should use more general and robust detection and defense methods, and
tackle SQL injection attacks as the main target of detection and defense; 3) In order to shorten
the development cycle and reduce the development cost, most enterprises do not fully analyze
and mitigate the security vulnerabilities that may be contained in the program, which leads to
the result that a large number of Web applications may suffer from security vulnerabilities.
Reworking all the code is almost impossible, and dynamic attack detection and defense are
essential to complement static security detection.

SQL injection attacks come in many forms. In 2006, according to the purpose and intention
of attackers, Halfond et al. divided SQL injection attacks into 7 types, including tautologies,
logically incorrect queries, union query, piggy-backed queries, stored procedures, inference
query, alternate encodings and so on [3].

To prevent SQL injection attacks, many scholars have published a lot of fruitful research
results, including static detection methods in the phase of implementing code, and dynamic
detection methods during the stage of code deployment and execution. However, most
methods have certain limitations. The shortcomings of existing methods mainly include:

Most existing methods can only detect a part of the known types of SQL injection attacks,
the accuracy of SQL injection detection needs to be improved.

The detection code cannot be reused with large granularity. There are various types of SQL
injection attacks, and their detection and defense require specific expertise. Most programmers
may not have such knowledge and skills. Although programmers can mitigate security
vulnerabilities in code to some extent after professional training in security, how to reduce the
cost for developing secure code in a short software development cycle is an issue that
enterprise managers must consider. Most of the existing methods lack the mechanism of
large-grained reuse of the code for SQL injection detection.

In this paper, an approach based on dynamic taint analysis [4]-[8] and AOP
(Aspect-Oriented Programming) [9] is proposed to detect and defend the external attacks of
software at runtime, and realize the large-grained reuse of SQL injection detection code. We
use AOP to encapsulate dynamic taint analysis processes (taint marking, taint propagation
analysis, SQL syntax analysis), and build an aspect library for SQL injection detection to
achieve the reuse of large-grained aspect code. Different from normal class libraries or

2578 Chengwan He et al.: A Reusable SQL Injection Behavior Detection Method for Java Web Applications

function libraries, the interrelated aspects used for tainting and taint propagation analysis can
be reused as a whole.

The main contributions of this paper are the following.
(1)A dynamic taint analysis method based on AOP is presented, including taint marking,

taint propagation and taint analysis. In order to improve the detection accuracy, we propose a
new taint marking method, which not only marks the user's input as the tainted data, but also
marks the starting and ending positions of the tainted data in a string, which realizes accurate
analysis of the tainted data.

(2)This paper proposes a metamodel of aspect library. Through the construction of an aspect
library and its management tool, the large-grained reuse of SQL injection detection code is
realized.

The approach proposed in this paper is an improvement and further study of our previous
work [10]. In this paper, we improve the tainting method of starting and ending information of
tainted data, and propose the taint propagation algorithm using string concatenation and
substring extraction as examples. At the same time, we also propose the metamodel and
construction method of aspect library.

The rest of the paper is structured as follows: In Section 2, we introduce the related work of
SQL injection detection. Then, we describe an SQL injection detection method based on AOP
and dynamic taint analysis in Section 3. An metamodel of Aspect library is presented in
Section 4. In Section 5, we use some experiments to evaluate the proposed method and in
Section 6, we conclude this paper.

2. Related Work

2.1 Vulnerability Detection Based on Program Analysis
Static analysis technology analyzes the source code of Web application lexicographically,
syntactically, and data processing process and logical structure, to find possible security risks
in the coding phase of the software development life cycle. Because of the context-free nature
of SQL statements, the syntax and semantics of normal and malicious statements are quite
different, so the syntax analysis technique can be applied to the detection of SQL injection
behavior. For static analysis, it is usually necessary to use a vulnerability scanner to conduct a
white-box scan of source code to determine the type of software vulnerability and
corresponding code block. For example, Shinetal's SQLUnitGen [11] located risk points and
generated inspection report through an automatic test, and developers manually modified the
defect code according to the scan results to repair software vulnerabilities. But for most
developers that are inexperienced and have no knowledge of security programming techniques,
there is little they can do about the results. Dynamic analysis method [12] includes data flow
analysis and control flow analysis, which find the vulnerabilities by observing the dynamic
properties such as memory usage and register values during program execution. The data flow
analysis attempts to trigger its potential vulnerabilities by constructing the boundary data, and
the control flow analysis detects the defects of the function call by setting the breakpoint in
real-time to track the control state transformation of the target program.

2.2 Vulnerability Detection Based on Taint Analysis
Researchers try to reason the trusted and untrusted parts of SQL statements according to a
certain strategy, but the accuracy of detection cannot be guaranteed. Taint analysis is slightly
more reliable than the above methods in accurately distinguishing trusted from untrusted parts

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 6, June 2020 2579

through tainting, taint propagation analysis and harmless processing, which is mainly divided
into dynamic and static taint analysis. In static taint analysis, Lam et al. used static data flow
analysis technology to check whether the tainted data inputted by the user reached the
execution point of SQL statement to dig SQL injection vulnerabilities [13]. Pixy [14] proposed
by Jovanovic et al. uses flow-sensitive, inter-process and context-sensitive static data flow
analysis methods for PHP programs to detect whether user input in target statements has been
properly verified and processed, thus mining Web application vulnerabilities. Minamide
proposed a string analysis method for PHP programs to accurately and efficiently simulate
dynamic Web content [15]. Wassermann et al. [16], based on the string analysis method
proposed by Minamide, used context-free grammar (CFG) to abstract the construction.
process of SQL statement, determined whether the grammar non-terminator was related to
user input with the static taint analysis method, and detected SQL injection vulnerability by
tracking it. Su also modified the string analysis method to make it suitable for static detection
of XSS vulnerabilities [17]. However, because this kind of static analysis needs to rely on
traditional program analysis methods and cannot well deal with the dynamic characteristics of
Web applications, it produces high false positives and false negatives and increases the burden
of manually confirming vulnerability results, so it can handle very limited types of programs.

Dynamic taint analysis [18]-[22] can better deal with the dynamic characteristics of the
program and can be divided into negative tainting and positive tainting based on untrusted data
and trusted data. For example, Nguyen et al. [23] proposed to dynamically track the
propagation process of taint mark at the character granularity level by modifying the data
structure of String class and built-in operation function in the PHP interpreter, and analyze the
syntax structure of SQL statement at the execution point (sink), not allowing SQL keywords
and sensitive characters to come from untrusted data. Qed [24] is a goal-oriented model
detection system that can automatically generate test cases to test Java programs with possible
vulnerabilities. CSSE [25] creates index tables with pointer variables as indexes in the PHP
engine and implements character level tainting for untrusted data with the bitmap as a value
type. Ardilla [26] is able to automatically generate test cases for XSS and SQL injection in
PHP, traces taints through symbol execution and generates specific vulnerability exploit code
based on changes in taint information. All the above approaches choose to mark the user input
as the tainted data and propagate the taint mark when the program runs. In practice, not only
are the sources and types of untrusted data widely distributed, but it is also difficult to
accurately track each of the tainted variables. In contrast, trusted data sources are more fixed,
such as hard-coded strings that programmers write into programs. Based on this characteristic,
researchers proposed a positive tainting method. Halfond et al. [4] set the trusted mark for
hard-coded strings in the program and dynamically tracked the propagation track of the mark.
The trusted and untrusted parts in SQL statements are distinguished by this mark. Since all
untrusted inputs exist in unmarked form, this method can effectively avoid underreporting the
attacks and improve the accuracy of SQL injection attack detection. All of the above methods
record taint information by allocating extra memory space or modifying data structure,
Although dynamic taint propagation analysis can give accurate results, it relies on effective
rules and string constraint solver accuracy to reduce the false negative, In other words, this
approach increases program coverage and increases the performance penalty of related
functions.

2.3 Other Approaches
In recent years, researchers have proposed character/encoding conversion, boundary marking
and character randomization to represent trusted/untrusted data to implement lightweight taint

2580 Chengwan He et al.: A Reusable SQL Injection Behavior Detection Method for Java Web Applications

analysis. PHPHard [7] is a method based on a similar idea of boundary tags. It uses positive
tainting to mark the inline HTML code and constant strings in PHP, and dynamically tracks
the security interval of response pages through the propagation of boundary tags, so as to
detect cross-site scripting attacks. SQLrand [27] is a protection scheme of the randomizing
instruction set. It adds a random integer after the keywords in the hard-coded string to carry
out the randomizing process to mark the trusted keywords, checks the legitimacy of the SQL
statement through the agent, and passes it to the database for execution after de-randomizing.
Zhang Huilin et al. proposed a tainting method based on encoding conversion [28], which is
applicable to UTF-8 encoded Web applications. The taint information is stored directly in the
non-standard single-byte encoding, the string length after the tainting is not affected, and the
tainted mark automatically carried in the character byte will be automatically propagated with
the program execution, and no additional taint tracking algorithm is required. Zhao Yufei et al.
took network traffic as the training data [29] to extract the features of malicious requests from
the real network environment to detect SQL injection.

3. Method Design and Implementation
The basic idea of this method is shown in Fig. 1. Each process of the taint analysis is

encapsulated in different aspects and stored in the aspect library. Different applications can
instantiate abstract aspects in the aspect library to achieve large-grained reuse of taint analysis.

Fig. 1. The basic idea

The SQL injection detection method based on AOP and dynamic taint analysis is shown in

Fig. 2. Taint source marking aspect marks the input data of the system as tainted data. Taint
propagation analysis aspects track string manipulation functions and annotate operation
results. The syntax-aware evaluation aspect evaluates the SQL syntax and detects the presence
of an SQL injection attack string before submitting the SQL statement to the database for
execution.

3.1 Taint Source Marking Aspect
Tainted data (untrusted data) includes many types. A typical example of tainted data is the data
inputted by the user in the interface, by which an attacker inputs a string containing a special
form and submits it to the Web server for execution to steal the information. Also, cookies

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 6, June 2020 2581

received by the server and data read from the file may contain attack strings.

Fig. 2. The SQL injection detection method based on AOP and dynamic taint analysis

To mark the tainted data, we add a field taintIndex to String, StringBuffer and StringBuilder

classes in JDK to mark the tainted information. After string manipulation, if a string contains
more than one tainted substring, taintIndex will contain the starting and ending positions of
these tainted substrings.

public final class String {
private final char[] value;
…
private final Hashtable taintIndex;

}

The tainting process is shown in Fig. 3. The taint marking aspect takes the user's input data
as the taint marking source and sets the taintIndex to [0, userinputdata.leng-1].

Broswer

Web server

String UserInputData=HttpServletRequest.getParameter()
String UserInputData=HttpServletRequest.getParameterValues()
String UserInputData=HttpServletRequest.getAttribute()
String UserInputData=HttpServletRequest.getParameterMap()
String UserInputData=HttpServletRequest.getCookies()

UserInputData

Taint source Aspect Marked
UserInputData

taintIndex: [0, UserInputData.length-1]

Marking

Fig. 3. Tainting process

3.2 Taint Propagation Analysis Aspects
String manipulation functions (such as string concatenation and splitting functions) and
assignment statements have the property of taint propagation. AOP-based taint propagation
analysis defines string manipulation functions and assignment operation as join points. In each
join point, the analysis process of taint propagation is woven separately(Fig. 4).

2582 Chengwan He et al.: A Reusable SQL Injection Behavior Detection Method for Java Web Applications

Fig. 4. Taint propagation analysis

According to the Java function manual, there are 216 basic string functions. Through

careful analysis, 81 of them have the property of taint propagation. For these functions, the
logic of taint propagation should be implemented one by one. This paper selects two
commonly used string manipulation functions (string concatenation and substring extraction)
to illustrate the algorithm of taint propagation analysis.

+ =
str1 str2 str

str1: {untainted}
str2: {untainted}
str: {untainted}

+ =
str1 str2 str

str1: {untainted}
str2: {tainted}
str: {tainted,
 taintIndex: [str1.length, str1.length+str2.length-1]
 }

+ =
str1 str2 str

str1: {tainted}
str2: {untainted}
str: {tainted,
 taintIndex: [0, str1.length-1]
 }

+ =
str1 str2 str

str1: {tainted}
str2: {tainted}
str: {tainted,
 taintIndex: [0, str1.length+str2.length-1]
 }

①

②

③

④

+ =
str1 str2 str

str1: {tainted,
 taintIndex: [taintStart, taintEnd]}
str2: {tainted,
 taintIndex: [taintStart, taintEnd]}
str: {tainted,
 taintIndex: {
 [str1.taintStart, str1.taintEnd],
 [str1.length+str2.taintStart, str1.length+str2.taintEnd]}
 }

⑤

Fig. 5. String concatenation

Fig. 5 shows the taint propagation analysis of the string concatenation operation. Depending
on the string being manipulated, the analysis process can be divided into five scenarios:

(1) If neither of the manipulated strings is a tainted string, then the result string does not

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 6, June 2020 2583

contain tainted data.
(2) If the first manipulated string is not a tainted string and the second manipulated string is

a tainted string, then the result string contains tainted data, and the index of starting and ending
positions of the tainted data is [str1.length, str1.length+ str2.leng-1].

(3) If the first manipulated string is a tainted string, and the second manipulated string does
not contain tainted data, then the result string contains tainted data, and the index of starting
and ending positions of the tainted data is [0, str1.leng-1].

(4) If both of the manipulated strings are tainted strings, then the result string contains
tainted data, and the index of starting and ending positions of the tainted data is [0, str1.length+
str2.leng-1].

(5) If both manipulated strings contain partial tainted strings, then the result string contains
tainted data, and the index of starting and ending positions of the tainted data is [str1.taintStart,
str1.taintEnd] and [str1.length+str2.taintStart, str1.length+str2.taintEnd].

=
str1 str

startIndex endIndex

str1: {untainted}
str2: {untainted}

=
str1 str

startIndex endIndex

str1: {tainted}
str2: {tainted,
 taintIndex: [0, str1.endIndex-str1.startIndex]
 }

=
str1 str

startIndex endIndex

str1: {tainted}
str2: {tainted，
 taintIndex: [str1.taintIndexStart-str1.startindex,
 str1.endIndex-str1.startIndex]
 }

taintIndexStart

①

②

③

Fig. 6. Substring extraction

Fig. 6 shows the analysis process of taint propagation of the substring extraction operation.
Depending on the string being manipulated, the analysis process can be divided into three
scenarios:

(1) If the manipulated string is not a tainted string, then the substring is not a tainted string.
(2) If the manipulated string is a tainted string, then the substring is a tainted string, and the

index of starting and ending positions of the tainted data is [0, str1.endindex-str1.startindex].
(3) If the manipulated string contains a partial tainted string, then the substring is a tainted

string, and the index of starting and ending positions of the tainted data is
[str1.taintIndexStart-str1.startindex, str1.endIndex-str1.startIndex].

2584 Chengwan He et al.: A Reusable SQL Injection Behavior Detection Method for Java Web Applications

3.3 Taint Detection Strategy
All related operations in Java programs that interact with the database are encapsulated in the
JDBC library. SQL injection sinks refer to the methods for accessing database, such as:

Statement.executeQuery()
Statement.executeUpdate()
Connection.prepareStatement()

The core of the detection method is to check whether the structure of the SQL statement
constructed by the application after receiving data inputted by user has changed. For accurate
detection, we use ANTLR language recognition tool to parse dynamically captured SQL
statements.

The SQL syntax evaluation resolves the SQL string recursively into three tokens
corresponding to keywords, operators, and literals.

Table 1. SQL keywords

Type Samples

Function SLEEP,SUBSTRING
Keyword FROM,WHERE

Expression UPDATE,SELECT
Union UNION
Type INT

Operator >
Comment #,--
Variable Var

If it is found that the parsed SQL statement does not contain any non-trusted syntax related

characters, it indicates that the statement conforms to the SQL security conditions, there is no
SQL injection behavior, and it is sent directly to the database for execution. If any of the
lexical symbols shown in Table 1 are tainted after parsing, these untrusted syntax-related
characters can break the logical structure of the original SQL statement, causing SQL injection
attacks. Automatically defend against SQL injection attacks by adding an escape character "\"
before these non-trusted syntax-related characters to signal an alternative interpretation of the
original characters.

4. Aspect Library Construction

4.1 Definition of Abstract Aspects
Because third-party libraries may be used in Web applications, string manipulation functions
with the same functionality may have different names for different libraries. To make
processes such as taint source marking and taint propagation analysis independent of libraries
or frameworks used by Web applications, we define join points based on the semantic
information of string manipulation functions, rather than using specific function names. When
instantiating an abstract aspect, the specific join point definitions are automatically generated
using the defined semantic mapping table (Fig. 7).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 6, June 2020 2585

Fig. 7. Join points definition based on the semantic information

4.2 Metamodel of Aspect Library
From the aspects of file organization, information description, and reusable aspect definition
method, we propose a general reusable construction method of aspect library, design and
implement the management tool of aspect library, which is used to manage, retrieve and
automatically generate concrete aspects of reusable abstract aspects, and improve the
efficiency of aspect reuse. Fig. 8 is our proposed metamodel of aspect library , which mainly
includes three parts: source code of abstract aspects, description XML file of aspect library,
and management tool of aspect library.

(1)Source Code of Abstract Aspect

Source code of abstract aspect is mainly organized by different functional categories. There
are three types of aspects: taint source marking, taint propagation analysis, and SQL syntax
analysis. In addition to AspecJ's basic elements that define abstract aspects: aspect name,
abstract pointcuts, advices, inter-type declarations, methods, attributes, and so on, the internal
structure of each abstract aspect also includes aspect-description annotations, abstract pointcut
description annotations, and so on.

(2)Aspect Library Description XML File

An aspect library description XML file is an XML file defined for describing an aspect
library and used to document the basic information of the aspect library, reusable aspect
information, and reusable definitions of pointcuts. Aspect library description XML files are
automatically managed by the management tool, including saving aspect information when
loading source code of abstract aspects and saving concrete definitions of pointcuts when
instantiating abstract pointcuts.

(3)Management Tool of Aspect Library

 Management tool of aspect library provides an ancillary tool for developers to efficiently
manage reusable aspect library resources. Its main functions are to load, manage and retrieve
source code of aspect library and automatically generate concrete aspects.

2586 Chengwan He et al.: A Reusable SQL Injection Behavior Detection Method for Java Web Applications

Fig. 8. Metamodel of Aspect library

5. Experiment and Discussion
Through manual and automated tools, injection behavior requests are frequently sent under
each injection point of the WAVSEP(Web Application Vulnerability Scanner Evaluation
Project) [30] and WebGoat [31] target environment to simulate the attacker's behavior. The
detection results are statistically analyzed in Table 2. Compared to several other typical
methods, our method can detect all seven known types of SQL injection attacks. When
performing the taint analysis at the sink, we can judge whether the SQL statement contains a
SQL injection attack based on the taint marking information and the result of the SQL syntax
analysis, which improves the accuracy of detection.This approach should also be effective for
unknown types of SQL injection attacks. At the same time, we can accurately replace illegal
characters in the SQL statement based on the starting and ending position information of the
tainted data, so as to achieve the purpose of automatic defense.

Table 2. Comparison of Detection Types of Several Typical Methods

Approaches Tautologies
Logically
Incorrect
Queries

Union
Query

Piggy-Backed
Queries

Stored
Procedures

Inference
Query

Alternate
Encodings

CSSE[24] √ √ √ √ × √ ×
SQLCHECK[16] √ √ √ √ × √ √

Our Approach √ √ √ √ √ √ √

The portability of the SQL injection detection model proposed in this paper is reflected in

the following three levels (shown in Fig. 9):

Aspect Library

Aspect Library
Management Tool

Aspect Query

Abstract Aspect
Instantiation

Aspect Library
Management

1 1

1

1

1 1

1

1

Abstract Aspect
Category

Abstract Aspect
Description FIle(XML)

11..*

1

1

Category Name

1

1..*

Abstract Aspect

1

1..*

Inter-type
Declaration

Method

Field Advice

Abstract
Pointcut

Functional
Description

Aspect Name

1

0..* 1

0..*

1

0..*

1

1..*

1

1..*

1

1

1

1

Aspect Description Node

1

1..*

1 1

Pointcut
Description

Advice
Description1

1

1

1

1

1..*

1

1..*

Code File Location

1

1

Taint Source
Marking Aspect

Taint Propagation
analysis Aspects

Syntax-Aware
Evaluation Aspect

1

1

1

1..*

1

1

1

1

1

1

1

1..*

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 6, June 2020 2587

Fig. 9. Method portability

(1) Portability For Different Tainting Methods
Dynamic taint analysis has two methods: positive tainting and negative tainting, both of

which have advantages and disadvantages. Considering that the type of taint source on the
server-side of a Web application is limited, and our method allows users to specify the taint
source, this paper adopts the method of negative tainting and uses AOP to encapsulate tainted
data and taint propagation analysis. However, we believe that this method is also suitable for
the taint analysis process with positive tainting, except that the implementation code of the
tainted data marking and SQL syntax analysis are slightly different.

(2) Portability for Third-party Libraries

Today's software development is inseparable from the third-party libraries (including open
source and free third-party libraries), even if the functions that implement the same function,
different libraries and software frameworks may provide different APIs. For example, string
concatenation function, in some libraries the name of the function is A, while in other libraries
the name is B. In order to make the taint propagation analysis correctly, we use the semantic
information (an abstract concept) of the string manipulation function to define join points in
the abstract aspects, and then use the corresponding specific function name to define the join

2588 Chengwan He et al.: A Reusable SQL Injection Behavior Detection Method for Java Web Applications

points when generating the concrete aspects, so as to ensure the correctness of the analysis of
taint propagation.

(3) Portability for Different Programming Languages

Aspects implemented in one language cannot be directly applied to Web applications
developed by other programming languages, but our detection model is completely portable as
long as that language has the corresponding AOP implementation or the Weaving mechanism
for the aspects.

6. Conclusion
This paper presented a reusable SQL injection behavior detection method for Java Web
applications based on AOP and dynamic taint analysis, which encapsulates the dynamic taint
analysis processes into different aspects and establishes the aspect library to realize the
large-grained reuse of SQL injection detection code. The detection code encapsulated by
aspect is woven into the source code by the weaver. The process does not need to modify the
execution engine of application and source code and has strong portability for applications
using different programming languages. This method is also applicable to other code injection
attacks such as cross-site scripting (XSS) and cross-site request forgery (CSRF).

References
[1] IBM Security. “Five Steps to Achieve Risk-Based Application Security Management,” Thought

Leadership White Paper, Jul. 2015.
[2] L. K. Shar, H. B. K. Tan, “Defeating SQL injection,” Computer, vol. 46, no. 3, pp. 69-77, 2013.

Article (CrossRef Link).
[3] W. G. J. Halfond, J. Viegas, and A. Orso, “A classification of SQL injection attacks and

countermeasures,” in Proc. of the International Symposium on Secure Software Engineering,
Washington, USA, pp. 13-15, 2006.

[4] W. G. J. Halfond, A. Orso, P. Manolios, “WASP: Protecting Web Applications Using Positive
Tainting and Syntax-Aware Evaluation,” IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, vol.34, no.1, PP. 65-81, 2008. Article (CrossRef Link).

[5] M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri, O. Tripp, and R. Berg, “F4F: Taint analysis of
framework-based Web applications,” ACM SIGPLAN Notices, vol. 46, no. 10, pp. 1053−1068,
2011. Article (CrossRef Link).

[6] I. Papagiannis, M. Migliavacca, and P. Pietzuch, “PHP ASPIS: Using partial taint tracking to
protect against injection attacks,” in Proc. of the Usenix Conf. on Web Application Development,
pp. 1-8, Feb. 2011.

[7] WANG Yi, LI Zhou-jun, and GUO Tao, “Literal tainting method for preventing code injection
attack in web application,” Journal of Computer Research and Development, vol. 49, no.11, pp.
2414-2423, 2012.

[8] WANG Lei, LI Feng, LI Lian, et al, “Principle and practice of taint analysis,” Journal of Software,
vol. 28, no. 4, pp. 860-882, 2017. Article (CrossRef Link).

[9] G. Kiczales, J. Lamping, A. Mendhekar, et al, “Aspect-oriented programming,” in Proc. of the
European Conference on Object-Oriented Programming, Jyvaskyla, Finland, pp. 220-242, 1997.
Article (CrossRef Link).

[10] HE Cheng-wan, YE Zhi-peng, “SQL Injection Behavior Detection Method Based on AOP and
Dynamic Taint Analysis.” Acta Electronica Sinica, vol.47, no.11, pp.2413-2419, 2019.
Article (CrossRef Link).

http://dx.doi.org/doi:10.1109/MC.2012.283
http://dx.doi.org/10.1109/TSE.2007.70748
http://dx.doi.org/10.1145/2048066.2048145
http://dx.doi.org/10.13328/j.cnki.jos.005190
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.3969/j.issn.0372-2112.2019.11.025

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 6, June 2020 2589

[11] Y. Shin, L. Williams, T. Xie, “SQLUnitGen: Test Case Generation for SQL Injection Detection,”
North Carolina State University, 2006.

[12] M. S. Lam, M. Martin, J. Whaley, et al, “Securing web applications with static and dynamic
information flow tracking,” in Proc. of ACM Sigplan Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, San Francisco, CA, USA, pp.3-12, 2008.
Article (CrossRef Link).

[13] V. B. Livshits, and M. S. Lam, “Finding security vulnerabilities in java applications with static
analysis,” in Proc. of the 14th Conference on USENIX Security Symposium, California, USA, pp.
18-18, 2005.

[14] N. Jovanovic, C. Kruegel, and E. Kirda E, “Pixy: a static analysis tool for detecting web
application vulnerabilities,” in Proc. of IEEE Symposium on Security and Privacy, pp. 258-263,
Berkeley, USA, 2006. Article (CrossRef Link).

[15] Y. Minamide, “Static approximation of dynamically generated Web pages,” in Proc. of the
International Conference on the World Wide Web, pp. 432-441, 2005.

[16] G. Wassermann, and Zhendong Su, “Sound and precise analysis of web applications for injection
vulnerabilities,” in Proc. of PLDI '07: Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 32-41, 2007. Article (CrossRef Link).

[17] G. Wassermann, Zhendong Su, “Static detection of cross-site scripting vulnerabilities,” in Proc. of
ACM/IEEE International Conference on Software Engineering, pp. 171-180, 2008.
Article (CrossRef Link).

[18] A. Naderi-Afooshteh, A. Nguyen-Tuong, M. Bagheri-Marzijarani, et al, “Joza: Hybrid taint
inference for defeating web application SQL injection attacks,” in Proc. of IEEE/IFIP
International Conference on Dependable Systems and Networks, pp. 172-183, Rio de Janeiro,
Brazil. Article (CrossRef Link).

[19] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All You Ever Wanted to Know about Dynamic
Taint Analysis and Forward Symbolic Execution (but Might Have Been Afraid to Ask),” in Proc.
of IEEE international Conference on Security and Privacy, pp. 317-331, 2010.
Article (CrossRef Link).

[20] ZHOU Ying, FANG Yong, HUANG Cheng, et al, “Detection of SQL injection behaviors for PHP
applications,” Journal of Computer Applications, vol. 38, no. 1, pp. 201-206, 2018.

[21] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, G. Vigna, “Cross site scripting
prevention with dynamic data tainting and static analysis,” in Proc. of the Network and
Distributed System Security Symposium, San Diego, California, USA, Feb. 2007.

[22] MA Jin-xin, LI Zhou-jun, ZHANG Tao, et al, “Taint analysis method based on offline indices of
instruction trace,” Journal of Software, vol. 28, no. 9, pp. 2388-2401, 2017.
Article (CrossRef Link).

[23] A. guyen-Tuong, S. Guarnieri, D. Greene, et al, “Automatically hardening web applications using
precise tainting,” in Proc. of IFIP 20th International Information Security Conference, Chiba,
Japan, pp. 295-307, 2005. Article (CrossRef Link).

[24] M. Martin, M. S. Lam, “Automatic Generation of XSS and SQL Injection Attacks with
Goal-directed Model Checking,” in Proc. of USENIX Security Symposium, pp. 31-44, 2008.

[25] T. Pietraszek, C. V. Berghe, “Defending against injection attacks through context-sensitive string
evaluation,” in Proc. of International Conference on Recent Advances in Intrusion Detection,
Seattle, WA, USA, pp. 124-145, 2005. Article (CrossRef Link).

[26] A. Kieyzun, P. J. Guo, K. Jayaraman, et al, “Automatic creation of SQL Injection and cross-site
scripting attacks,” in Proc. of IEEE International Conference on Software Engineering,
Vancouver, BC, Canada , pp. 199-209, 2009. Article (CrossRef Link).

[27] S. W. Boyd, and A. D. Keromytis, “SQLrand: Preventing SQL Injection Attacks,” in Proc. of
2ndInternational Conference on Applied Cryptography and Network Security, Yellow Mountain,
China, pp. 292-302, 2004. Article (CrossRef Link).

[28] ZHANG Hui-lin, DING Yu, ZHANG Li-hua, et al, “SQL injection prevention based on sensitive
characters,” Journal of Computer Research and Development, vol. 53, no. 10, pp. 2262-2276,
2016. Article (CrossRef Link).

http://dx.doi.org/10.1145/1328408.1328410
http://dx.doi.org/10.1109/SP.2006.29
http://dx.doi.org/10.1145/1250734.1250739
http://dx.doi.org/10.1145/1368088.1368112
http://dx.doi.org/2015.10.1109/DSN.2015.13
http://dx.doi.org/10.1109/SP.2010.26
http://dx.doi.org/10.13328/j.cnki.jos.005179
http://dx.doi.org/10.1007/0-387-25660-1_20
http://dx.doi.org/10.1007/11663812_7
http://dx.doi.org/10.1109/ICSE.2009.5070521
http://dx.doi.org/10.1007/978-3-540-24852-1_21
http://dx.doi.org/10.7544/issn1000-1239.2016.20160443

2590 Chengwan He et al.: A Reusable SQL Injection Behavior Detection Method for Java Web Applications

[29] ZHAO Yu-fei, XIONG Gang, HE Long-tao, et al, “Approach to detecting SQL injection behaviors
in network environment,” Journal on Communications, vol. 37, no. 2, pp. 89-98, 2016.
Article (CrossRef Link).

[30] Shay Chen, “The Web Application Vulnerability Scanner Evaluation Project,” 2019.
[31] OWASP, “WebGoat,” 2019. [Online]. Available: https://github.com/WebGoat/WebGoat,

Chengwan received master’s degree in Information Engineering of Hokkaido University in
Japan. In 2005, he received doctor’s degree in Computer Software and Theory of State key
laboratory of Software Engineering, Wuhan University, China. His current research interest
is theory and application of software engineering.

Yue He is a junior student in Wuhan University of Technology and majors in Electricity
Engineering currently. His current research interest is digital signal processing algorithms
and applications.

http://dx.doi.org/10.11959/j.issn.1000-436x.2016034
https://github.com/WebGoat/WebGoat

