• Title/Summary/Keyword: cocoa butter equivalent

Search Result 4, Processing Time 0.023 seconds

Studies on the Development of Cocoa Butter Equivalent Fat by Reverse - Micelle Enzyme Reaction System (역마이셀-효소반응계에 의한 코코아 버터 대용지 개발에 관한 연구)

  • Yoon, Seung-Heon;Shin, Woong-Kyu;Lee, Yoon-Hyung;Rhee, Kyu-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.111-116
    • /
    • 1992
  • Production of cocoa butter equivalent fat (CBE) from palm oil and stearic acid by reverse micelle lipase reaction system was studied. Qualitative and quantitative analyses of triglycerides were performed by HPLC. The reaction conditions for maximum conversion from triolein and stearic acid to 1-stearoyl-2,3-dioleoyl glycerol(SOO) and 1,3-distearoyl-2-oleoyl glycerol(SOS) were as follows: a molar ratio of water/Aerosol OT, 10; triolein, 30 mM; stearic acid, 90 mM; pH, 7.5; and temperature, $50^{\circ}C$. By lipase in reverse micellar system containing palm oil and stearic acid, 1,3-dipalmitoyl-2-oleoyl glycerol(POP), 1-palmitoyl-2,3-dioleoyl glycerol(POO) and SOO decreased, but large amounts of 1-palmitoyl-2-oleoyl-3-stearoyl glycerol(POS) and SOS was formed.

  • PDF

Optimization of Lipase-Catalyzed Production of Structured Lipids from Canola Oil Containing Similar Composition of Triacylglycerols to Cocoa Butter (Canola Oil로부터 코코아버터와 유사한 Triacylglycerol 조성을 가진 재구성지질의 효소적 합성 최적화 연구)

  • Moon, Jun-Hee;Lee, Jeung-Hee;Shin, Jung-Ah;Hong, Soon-Taek;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.10
    • /
    • pp.1430-1437
    • /
    • 2011
  • Synthesis conditions of cocoa butter equivalents were optimized using the response surface method (RSM) by interesterification of canola oil (Ca), palmitic ethyl ester (PEE), and stearic ethyl ester (StEE). The reaction was catalyzed by immobilized lipase (Lipozyme TLIM) from Thermomyces lanuginosa to produce structured lipids containing a composition of triacylglycerols similar to cocoa butter. Reaction conditions were optimized using D-optimal design with the three reaction factors of the substrate molar ratio of canola oil to palmitic ethyl ester and stearic ethyl ester (Ca : PEE : StEE=1:1:3, 1:1.66:5, 1:2:6, 1:2.33:7, 1:3:9, $X_1$), enzyme ratio (2~6%, $X_2$), and reaction time (30~270 min, $X_3$). The optimal conditions that minimized acyl-migration while maximizing 1-palmitoyl-2-oleoyl-3-stearoyl glycerol (POS), 1,3-distearoyl-2-oleoyl glycerol (SOS), and 1,3-dipalmitoyl-2-oleoyl glycerol (POP) were predicted, resulting in Ca : PEE : StEE=1:3:9, 6% of enzyme ratio, and 40 min of reaction time. The reaction product of structured lipids was synthesized again under the same conditions, showing 10.43 area% of acyl-migration, 25.31 area% of POS/PSO, 19.79 area% of SOS, and 11.22 area% of POP.

Comparison of Solid Fat Index and Triacylglycerol Composition of the Blends from Natural Vegetable Fats and Palm Stearin Fraction (천연 식물고체지와 팜스테아린 분별유 혼합물의 Solid Fat Index 및 Triacylglycerol 조성 비교)

  • Sung, Min-Hye;Hong, Soon-Taek;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.10
    • /
    • pp.1438-1446
    • /
    • 2011
  • Palmitoyl-oleoyl-oleoyl (POO) and palmitoyl-oleoyl-palmitoyl triacylglycerol rich fraction (PSL) was obtained from the acetone fractionation of palm stearin. The fatty acid composition (total and positional), tri-acylglycerol species, and solid fat index (SFI) were compared among the blends of natural vegetable fats (sal fat, illipe fat, kokum fat, shea stearin fat, and shea butter) and PSL with different ratios (50:50, 60:40, 65:35, 70:30). In total fatty acid composition of PSL, palmitic, oleic, and linoleic acids were the major fatty acids, whereas in natural vegetable fats stearic and palmitic acids were the major fatty acids. Moreover, oleic acid was a major fatty acid at sn-2 position in sal fat, illipe fat, and kokum fat. The TAG species was analyzed by reversed-phase HPLC, from which the PN value ranged from 46 to 54. When natural vegetable fats and PSL were blended with different ratios, decreasing the amount of PSL resulted in increasing SFI in most cases. Among blends, the SFI of sal fat and PSL were most similar to commercial cocoa butter equivalent (CBE).

Optimization of 1(3)-Palmitoyl-2-Oleoyl-3(1)-Stearoyl Glycerol Produced via Lipase-catalyzed Esterification Using the Response Surface Methodology (Camellia Oil로부터 1(3)-Palmitoyl-2-Oleoyl-3(1)-Stearoyl Glycerol을 함유한 효소적 합성반응물의 최적화 연구)

  • Hwang, Yun-Ik;Shin, Jung-Ah;Lee, Jeung-Hee;Hong, Soon-Taek;Lee, Ki-Teak
    • Food Science and Preservation
    • /
    • v.18 no.5
    • /
    • pp.721-728
    • /
    • 2011
  • 1(3)-palmitoyl-2-oleoyl-3(1)-stearoyl-(POS)-glycerol-enriched reaction products were synthesized from camellia oil, palmitic ethyl ester, and stearic ethyl ester via lipase-catalyzed interesterification. Response surface methodology (RSM) was employed to optimize the production of the POS-enriched reaction product (Y1, %) and the stearicand palmitic-acid contents at the sn-2 position due to acyl migration (Y2, %). The reaction factors were the enzyme amount (X1, 2-6%), reaction time (X2, 60-360 min), and substrate molar ratio of camellia oil to palmitic ethyl ester and stearic ethyl ester (X3, 1-3 mol). The predictive models for Y1 and Y2 were adequate and reproducible as no lack of fit was signified (0.128 and 0.237) and as there were satisfactory levels of R2 (0.968 and 0.990, respectively). The optimal conditions for the reaction product for maximizing Y1 while minimizing Y2 were predicted at the reaction combination of 5.86% enzyme amount, 60 min reaction time, and 1:3 substrate molar ratio (3 moles of palmitic ethyl ester and 3 moles of stearic ethyl ester). Actual reaction was performed under the same conditions as above, and the resulting product contained 20.19% TAG-P/O/S and 12.71% saturated fatty acids at the sn-2 position.