DOI QR코드

DOI QR Code

Comparison of Solid Fat Index and Triacylglycerol Composition of the Blends from Natural Vegetable Fats and Palm Stearin Fraction

천연 식물고체지와 팜스테아린 분별유 혼합물의 Solid Fat Index 및 Triacylglycerol 조성 비교

  • Sung, Min-Hye (Dept. of Food Science and Technology, Chungnam National University) ;
  • Hong, Soon-Taek (Dept. of Food Science and Technology, Chungnam National University) ;
  • Lee, Ki-Teak (Dept. of Food Science and Technology, Chungnam National University)
  • Received : 2011.05.20
  • Accepted : 2011.09.23
  • Published : 2011.10.31

Abstract

Palmitoyl-oleoyl-oleoyl (POO) and palmitoyl-oleoyl-palmitoyl triacylglycerol rich fraction (PSL) was obtained from the acetone fractionation of palm stearin. The fatty acid composition (total and positional), tri-acylglycerol species, and solid fat index (SFI) were compared among the blends of natural vegetable fats (sal fat, illipe fat, kokum fat, shea stearin fat, and shea butter) and PSL with different ratios (50:50, 60:40, 65:35, 70:30). In total fatty acid composition of PSL, palmitic, oleic, and linoleic acids were the major fatty acids, whereas in natural vegetable fats stearic and palmitic acids were the major fatty acids. Moreover, oleic acid was a major fatty acid at sn-2 position in sal fat, illipe fat, and kokum fat. The TAG species was analyzed by reversed-phase HPLC, from which the PN value ranged from 46 to 54. When natural vegetable fats and PSL were blended with different ratios, decreasing the amount of PSL resulted in increasing SFI in most cases. Among blends, the SFI of sal fat and PSL were most similar to commercial cocoa butter equivalent (CBE).

팜 스테아린을 아세톤을 이용한 분별을 하여 POO와 POP가 많이 함유된 분별유지(PSL)를 얻었다. 분별을 위한 조건으로는 분별온도 $29.3^{\circ}C$, 아세톤과의 비율 1:5.7(w/v), 분별시간은 24시간이었다. 이후 천연 식물고체지들(sal fat, illipe fat, kokum fat, shea stearin fat, shea butter)과 PSL을 다양한 비율(50:50, 60:40, 65:35, 70:30)로 혼합하여 상용화되고 있는 CBE와 SFI를 비교하였으며, 총 지방산 조성 및 위치별 지방산 조성 분석과 TAG 분자들의 조성과 함량을 알아보았다. GC에 의한 지방산 조성 분석 결과, PSL의 경우 palmitic, oleic 그리고 linoleic acid 순으로 함량이 높았으며, 천연 식물고체지의 경우 대부분 stearic, oleic 그리고 palmitic acid의 순으로 높은 함량을 나타내었다. 또한, sal fat, illipe fat 및 kokum fat의 경우 sn-2 위치에 불포화지방산인 oleic acid가 90% 이상 존재하는 것을 알 수 있었다. TAG 분자들의 PN값은 46~54 사이에 존재하였다. PSL의 경우 PN 48에서 86.53 area%로 가장 높게 나타났으나, 천연 식물고체지들의 경우 대부분 PN 50과 52에서 주로 TAG 분자들이 존재하였다. 천연 식물고체지와 PSL을 다양한 비율로 혼합하였을 때, 대부분의 경우 PSL의 함량이 감소할수록 SFI는 증가하는 경향을 보였다. 특히, sal fat과 혼합하였을 때, CBE와 유사한 SFI를 나타내었다. Sal fat과 PSL의 blending 혼합물의 경우 oleic acid의 함량이 가장 많았고, PSL의 함량이 낮아질수록 palmitic acid의 함량은 감소하였고, stearic acid는 점차 높아지는 경향을 보였다.

Keywords

References

  1. Undurraga D, Markovits A, Erazo S. 2001. Cocoa butter equivalent through enzymic interesterification of palm oil midfraction. Process Biochem 36: 933-939. https://doi.org/10.1016/S0032-9592(00)00260-0
  2. Saldanaa MDA, Mohamed RS, Mazzafera P. 2002. Extraction of cocoa butter from Brazillian cocoa beans using supercritical $CO_2$ and ethane. Fluid Phase Equilibr 194-197: 885-894. https://doi.org/10.1016/S0378-3812(01)00719-1
  3. Segalla SD, Artzb WE, Raslana DS, Ferraza VP, Takahashia JA. 2005. Analysis of triacylglycerol isomers in malaysian cocoa butter using HPLC-mass spectrometry. Food Res Int 38: 167-174. https://doi.org/10.1016/j.foodres.2004.09.008
  4. Ciftcia ON, Padiloglu S, Gogusa F. 2009. Conversion of olive pomance oil to cocoa butter-like fat in a packed-bed enzyme reactor. Biores Technol 100: 324-329. https://doi.org/10.1016/j.biortech.2008.05.035
  5. Lipp M, Simoneau C, Ulberth F, Anklam E, Crews C, Brereton P, Greyt WD, Schwack W, Wiedmaier C. 2001. Composition of genuine cocoa butter and cocoa butter equivalents. J Food Compos Anal 14: 399-408. https://doi.org/10.1006/jfca.2000.0984
  6. Choi US, Ahn BG, Kwon OK, Chun YJ. 1997. Tribological behavior of some antiwear additives in vegetable oils. Tribol Int 30: 677-683. https://doi.org/10.1016/S0301-679X(97)00039-X
  7. Chong CL. 1993. Chemical and physical properties of palm oil and palm kernel oil. In Selected Readings on Palm Oil and I ts Uses for Palm Oil Familiarization Programme (POFP) . Organizing Committee of POFP, ed. Palm Oil Research Institute of Malaysia, Kuala Lumpur, Malaysia. p 12-31.
  8. Undurragaa D, Markovits A, Erazo S. 2001. Cocoa butter equivalent through enzymatic interesterification of palm oil midfraction. Process Biochem 36: 933-939. https://doi.org/10.1016/S0032-9592(00)00260-0
  9. Wang HX, Wu H, Ho CT, Weng XC. 2006. Cocoa butter equivalent from enzymatic interesterification of tea seed oil and fatty acid methyl esters. Food Chem 97: 661-665. https://doi.org/10.1016/j.foodchem.2005.04.029
  10. Sridhar R, Lakshminarayana G, Kaimal TNB. 1991. Modification of selected Indian vegetable fats into cocoa butter substitutes by lipase-catalyzed ester interchange. J Am Oil Chem Soc 68: 726-730. https://doi.org/10.1007/BF02662160
  11. Lipp M, Anklam E. 1998. Review of cocoa butter and alternative fats for use in chocolate-part A. Compositional data. Food Chem 62: 73-97. https://doi.org/10.1016/S0308-8146(97)00160-X
  12. Smith KW. 2001. Cocoa butter and cocoa butter equivalents. In Structured and Modified Lipids. Gunstone FD, ed. Marcel Dekker Ink, New York, NY, USA. p 401-422.
  13. Shin JA, Sung MH, Lee SM, Son JM, Lee JH, Hong ST, Lee KT. 2011. Optimization of acetone-fractionation for 1-palmitoyl-2-oleoyl-3-oleoyl glycerol and 1-palmitoyl-2-oleoyl-3-palmitoyl glycerol by response surface methodology. J Korean Soc Food Sci Nutr 40: 975-980. https://doi.org/10.3746/jkfn.2011.40.7.975
  14. Lee KT, Foglia TA. 2001. Fractionation of menhaden oil and partially hydrogenated menhaden oil: characterization of triacylglycerol fractions. J Am Oil Chem Soc 78: 297-303. https://doi.org/10.1007/s11746-001-0260-9
  15. Taguchi H, Watanabe H, Onizawa K, Nagano T, Gotoh N, Yasukawa T, Tsushima R, Shimasaki H, Itakura H. 2000. Double-blind controlled study on the effects of dietary diacylglycerol on postprandial serum and shylomicron triacylglycerol responses in healthy humans. J Am Coll Nutr 19: 789-796. https://doi.org/10.1080/07315724.2000.10718079
  16. White DA, Benet AJ, Billett MA, Salter AM. 1998. The assembly of triacylglycerol-rich lipoproteins: an assential role for the microsomal triacylglycerol tranfer protein. Br J Nutr 80: 219-220.
  17. Konda H, Hase T, Tokimitsu I. 2003. Digestion and assimilation features of dietary DAG in the rat small intestine. Lipid 38: 25-30. https://doi.org/10.1007/s11745-003-1027-7
  18. Criado M, Hernandez-Martin E, Lopez-Hernandez A, Otero C. 2007. Enzymatic interesterification of extra virgin olive oil with a fully hydrogenated fat: characterization of the reaction and its products. J Am Oil Chem Soc 84: 717-726. https://doi.org/10.1007/s11746-007-1104-y