• Title/Summary/Keyword: cobalt porphyrin

Search Result 13, Processing Time 0.035 seconds

Gas Separation Membranes Containing $Re_6Se_8(MeCN)_6^{2+}$ Cluster-Supported Cobalt-Porphyrin Complexes

  • Park Su Mi;Won Jongok;Lee Myung-Jin;Kang Yong Soo;Kim Se-Hye;Kim Youngmee;Kim Sung-Jin
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.598-603
    • /
    • 2004
  • Cellulose nitrate (CN) composite membranes, containing cobalt porphyrin (CoP) complexes self-assembled within nanometer-sized rhenium clusters (ReCoP), have been prepared and their oxygen and nitrogen gas perme­abilities were analyzed. The solubility of ReCoP and the characteristics of the corresponding composite membranes were analyzed using a Cahn microbalance, FT-IR spectroscopy, wide-angle X-ray scattering, and differential scanning calorimetry. The nitrogen permeability through the CN composite membranes decreased upon addition of ReCoP and CoP, which implies that the presence of these oxygen carrier complexes affects the structure of the polymer matrix. The oxygen permeability through the composite membranes containing small quantities of ReCoP decreased, but it increased upon increasing the concentration. The oxygen gas transport was affected by the matrix at low ReCoP concentrations, but higher concentrations of ReCoP increased the oxygen permeability as a result of its reversible and specific interactions with oxygen, effectively realizing ReCoP carrier-mediated oxygen transport.

Polypyrrole Doped with Sulfonate Derivatives of Metalloporphyrin: Use in Cathodic Reduction of Oxygen in Acidic and Basic Solutions

  • 송위환;백운기
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.183-188
    • /
    • 1998
  • Incorporation of metalloporphyrins into polypyrrole (PPy) film was achieved either by electropolymerization of pyrrole in the presence of metal-tetra(sulfonatophenyl)porphyrin anion (MTSPP, M=Co, Fe) or by metalizing hydrogenated tetra(4-sulfonatophenyl)porphyrin anion (H2TSPP) doped into PPy through ion-exchange. Electrochemical reduction of oxygen on the PPy doped with metallo porphyrin (PPy-MTSPP) was studied in acidic and basic solutions. Oxygen reduction on PPy-MTSPP electrodes appeared to proceed through a 4-electron pathway as well as a 2-electron path. In acidic solutions, the overpotential for O2 reduction on PPy-CoTSPP electrode was smaller than that on gold by about 0.2 V. In basic solutions the overpotential of the PPy-CoTSPP electrode in the activation range was close to those of Au and Pt. The limiting current was close to that of Au. However, polypyrrole doped with cobalt-tetra(sulfonatophenyl)porphyrin anion (PPy-CoTSPP) or with iron-tetra(sulfonatophenyl)porphyrin anion (PPy-FeTSPP) was found to have limited potential windows at high temperatures (above 50 ℃), and hence the electrode could not be held at the oxygen reduction potentials in basic solutions (pH 13) without degradation of the polymer.

Adsorptions and Dissociations of Nitric Oxides at Metalloporphyrin Molecules on Metal Surfaces: Scanning Tunneling Microscopy and Spectroscopy Study

  • Kim, Ho-Won;Chung, Kyung-Hoon;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.108-108
    • /
    • 2011
  • Organometallic complexes containing unpaired spins, such as metalloporphyrin or metallophthalocyanine, have extensively studied with increasing interests of their promising model systems in spintronic applications. Additionally, the use of these complexes as an acceptor molecule in chemical sensors has recently received great attentions. In this presentation, we have investigated adsorption of nitric oxide (NO) molecules at Co-porphyrin molecules on Au(111) surfaces with scanning tunneling microscopy and spectroscopy at low temperature. At the location of Co atom in Co-porphyrin molecules, we could observe a Kondo resonance state near Fermi energy in density of states (DOS) before exposing NO molecules and the Kondo resonance state was disappeared after NO exposing because the electronic spin structure of Co-porphyrin were modified by forming a cobalt-NO bonding. Furthermore, we could locally control the chemical reaction of NO dissociations from NO-CoTPP by electron injections via STM probe. After dissociation of NO molecules, the Kondo resonance state was recovered in density of state. With a help of density functional theory (DFT) calculations, we could understand that the modified electronic structures for NO-Co-porphyrin could be occurred by metal-ligand hybridization and the dissociation mechanisms of NO can be explained in terms of the resonant tunneling process via molecular orbitals.

  • PDF

Influence of Fe(110) Substrate with strong On-site Coulomb Repulsion on the Electronic Structure of Single Cobalt Tetraphenylporphyrin: Scanning Tunneling Microscopy Study

  • O, Yeong-Taek;Jeong, Ho-Gyun;Seo, Jeong-Pil;Kim, Hyo-Won;Jeon, Sang-Jun;Kim, Seong-Min;Yu, Jae-Jun;Guk, Yang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.94-94
    • /
    • 2010
  • Scanning tunneling microscopy (STM) was used to study the electronic structure of cobalt(II) tetraphenylporphyrin (CoTPP) on the Fe/W(110) substrate. Clover-like conformation of CoTPP was observed and showed bias dependent STM images. The central Co(II) ion of this porphyrin was protruded on the positive biases, but it was depressed on the negative biases. On the positive biases, the phenyl rings of CoTPP appeared to be bright contrary to the invisible pyrrole rings. These results were compared the first-principles calculations using GGA and GGA+U to elucidate the influence of the Fe substrate. GGA+U results agreed well with the experimental results; however, GGA did not. These results show that proper treatment of the on-site Coulomb repulsion of the Fe ions is crucial to describe the electronic structure of this system. By the comparison between the GGA+U calculations on the Fe substrate and the gas phase calculations, it can be noted that chemical potential shift occurred accompanying charge transfer from the Fe ions of the substrate to the pyrrole ligand of the porphyrin.

  • PDF

Cobalt Redox Electrolytes in Dye-Sensitized Solar Cells : Overview and Perspectives (염료감응 태양전지용 코발트 전해질의 최신 연구동향 및 전망)

  • Kwon, Young Jin;Kim, Hwan Kyu
    • Current Photovoltaic Research
    • /
    • v.2 no.1
    • /
    • pp.18-27
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs), developed two decades ago, are considered to be an attractive technology among various photovoltaic devices because of their low cost, accessible dye chemistry, ease of fabrication, high power conversion efficiency, and environmentally friendly nature. A typical DSSCs consists of a dye-coated $TiO_2$ photoanode, a redox electrolyte, and a platinum (Pt)-coated fluorine-doped tin oxide (FTO) counter electrode. Among them, redox electrolytes have proven to be extremely important in improving the performance of DSSCs. Due to many drawbacks of iodide electrolytes, many research groups have paid more attention to seeking other alternative electrolyte systems. With regard to this, one-electron outer sphere redox shuttles based on cobalt complexes have shown promising results: In 2014, porphyrin dye (SM315) with the cobalt (II/III) redox couple exhibited a power conversion efficiency of 13% in DSSCs. In this review, we will provide an overview and perspectives of cobalt redox electrolytes in DSSCs.

Poly(3,4-ethylenedioxythiophene) Electrodes Doped with Anionic Metalloporphyrins

  • 송의환;여인형;백운기
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1303-1308
    • /
    • 1999
  • Conducting poly(3,4-ethylenedioxythiophene) (PEDT) films with metalloporphyrins incorporated as the counter ions were prepared by electropolymerization of the monomer in the presence of metal-tetra(sulfonatophenyl) porphyrin anions. Cathodic reduction of oxygen on the resulting conducting polymer films was studied. The overpotential for O2 reduction on electrodes with cobalt-porphyrin complex was significantly smaller in acidic solutions than on gold. In basic solutions, the overpotential at low current densities was close to those on platinum and gold. Polymer electrode with Co-complex yielded higher limiting currents than with Fe-complex, although the Co-complex polymer electrode was a poorer electrocatalyst for O2 reduction in the activation range of potential than the Fe counterpart. From the rotating ring-disk electrode experiments, oxygen reduction was shown to proceed through either a 4-electron pathway or a 2-electron pathway. In contrast to the polypyr-role-based electrodes, the PEDT-based metalloporphyrin electrodes were stable with wider potential windows, including the oxygen reduction potential. Their electrocatalytic properties were maintained at temperatures up to 80℃ in KOH solutions.

The Electrocatalytic Reduction of Oxygen by Bis-Cobalt Phenylporphyrins in Various pH Solutions (여러 가지 pH 수용액에서 Bis-Cobalt Phenylporphyrin 유도체들에 의한 산소의 전극 촉매적 환원)

  • Yong-Kook Choi;Ki-Hyung Chjo;Jong-Ki Park
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.735-743
    • /
    • 1993
  • The electrocatalytic reduction of oxygen is investigated by cyclic voltammetry and chronoamperometry at glassy carbon electrode and carbon microelectrode coated with a variety of cobalt phenylprophyrins in various pH solutions. Oxygen reduction catalyzed by the monomeric porphyrin Co(Ⅱ)-TPP mainly occurs through the 2e$^-$ reduction pathway resulting in the formation of hydrogen peroxide whereas electrocatalytic process carried out 4e$^-$ reduction pathway of oxygen to H$_2$O at the electrodes coated with cofacial bis-cobalt phenylporphyrins in acidic solution. The electrocatalytic reduction of oxygen is irreversible and diffusion controlled. The reduction potentials of oxygen in various pH solutions have a straight line from pH 4 to pH 13, but level off in strong acidic solution. The reduction potentials of oxygen shift to positive potential more 400 mV at the electrode coated with monomer Co-TPP compound than bare glassy carbon electrode while 750 mV at the electrode coated with dimer Co-TPP compound.

  • PDF

The Electrocatalytic Reduction of Dioxygen by Bis-Cobalt Phenylporphyrins in Alkaline Solution (알칼리 수용액에서 Bis-Cobalt Phenylporphyrin 유도체들에 의한 산소의 전극 촉매적 환원)

  • Yong-Kook ChoI;Hyun-Ju Moon;Seung-Won Jeon;Ki-Hyung Chjo
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.4
    • /
    • pp.462-469
    • /
    • 1993
  • The electrocatalytic reduction of dioxygen is investigated by cyclic voltammetry and chronoamperometry at glassy carbon electrode and carbon microelectrode coated with a variety of cobalt phenylporphyrins. The n value obtained at carbon microelectrode is slightly different from that determined at glassy carbon electrode. Dioxygen reduction catalyzed by the monormeric porphyrin Co(II)-TPP mainly occurs through the $2e^-$ reduction pathway resulting in the formation of hydrogen peroxide, electrocatalytic process carries out $4e^-$ reduction pathway of dioxygen to $H_2O$ at the electrodes coated with bis-cobalt phenylporphyrins. The electrocatalytic reduction of dioxygen is irreversible and diffusion controlled.

  • PDF

Self-Assembled Peptide Structures for Efficient Water Oxidation

  • Lee, Jae Hun;Lee, Jung Ho;Park, Yong Sun;Nam, Ki Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.280-280
    • /
    • 2013
  • In green plants, energy generation is accomplished through light-harvesting photosystem, which utilize abundant visible light and multi-stepwise redox reaction to oxidize water and reduce NADP+, transferring electrons efficiently with active cofactors1. Inspired by natural photosynthesis, artificial solar water-splitting devices are being designed variously. However, the several approaches involving immobilization2, conjugation3, and surface modification4 still have limitations. We have made artificial photosynthesis templates by self-assembling tyrosine-based peptide to mimick photosystem II. Porphyrin sensitizer absorbing blue light strongly was conjugated with the templates and they were hybridized with cobalt oxide through the reduction of cobalt ions in an aqueous solution. The formation of hybrid templates was characterized using TEM, and their water oxidation performance was measured by fluorescence oxygen probe. Our results suggest that the bio-templated assembly of functional compounds has a great potential for artificial photosynthesis.

  • PDF

Study on Determination of Seven Transition Metal Ions in Water and Food by Microcolumn High-Performance Liquid Chromatography

  • Hu, Qiufen;Yang, Guangyu;Li, Haitao;Tai, Xi;Yin, Jiayuan
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.694-698
    • /
    • 2004
  • A new method for the simultaneous determination of seven transition metal ions in water and food by microcolumn high-performance liquid chromatography has been developed. The lead, cadmium, mercury, nickel, cobalt, silver and tin ions were pre-column derivatized with tetra-(4-aminophenyl)-porphyrin ($T_4$-APP) to form the colored chelates which were then enriched by solid phase extraction with $C_{18}$ cartridge. The enrichment factor of 50 was achieved by eluted the retained chelates from the cartridge with tetrahydrofuran (THF). The chelates were separated on a ZORBAX Stable Bound microcolumn ($2.0{\times}50\;mm,\;1.8\;{\mu}m$)with methanol-tetrahydrofuran (95 : 5, v/v, containing 0.05 mol/L pyrrolidine-acetic acid buffer salt, pH = 10.0) as mobile phase at a flow rate of 0.5 mL/min and detected with a photodiode array detector from 350-600 nm. The seven chelates were separated completely within 2.0 min. The detection limits of lead, cadmium, mercury, nickel, cobalt, silver and tin are 4 ng/L, 3 ng/L, 6 ng/L, 5 ng/L, 5 ng/L, 6 ng/L, 4 ng/L respectively in the original samples. This method was applied to the determination of the seven transition metal in water and food samples with good results.