• Title/Summary/Keyword: coaxial monitoring

Search Result 27, Processing Time 0.025 seconds

A Study on the Measurement for the Nano Scale Film Formation of Ultra Low Aspect Ratio

  • Jang Siyoul;Kong Hyunsang
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.283-288
    • /
    • 2004
  • The measurement of ultra low aspect ratio fluid film thickness is very crucial technique both for the verification of lubrication media characteristics and for the clearance design in many precision components such as MEMS, precision bearings and other slideways. Many technologies are applied to the measurement of ultra low aspect ratio fluid film thickness (i.e. elastohydrodynamic lubrication film thickness). In particular, in-situ optical interferometric method has many advantages in making the actual contact behaviors realized with the experimental apparatus. This measurement method also does the monitoring of the surface defects and fractures happening during the contact behavior, which are delicately influenced by the surface conditions such as load, velocity, lubricant media as well as surface roughness. Careful selection of incident lights greatly enhances the fringe resolutions up to $\~1.0$ nanometer scale with digital image processing technology. In this work, it is found that coaxial aligning trichromatic incident light filtering system developed by the author can provide much finer resolution of ultra low aspect ratio fluid film thickness than monochromatic or dichromatic incident lights, because it has much more spectrums of color components to be discriminated according the variations of film thickness. For the measured interferometric images of ultra low aspect ratio fluid film thickness it is shown how the film thickness is finely digitalized and measured in nanometer scale with digital image processing technology and space layer method. The developed measurement system can make it possible to visualize the contact deformations and possible fractures of contacting surface under the repeated loading condition.

  • PDF

Development of a Duplexer Module for Remote Wireless Communication System of Guided Weapon System with Temperature-Insensitive Electrical Performances (온도변화에 둔감한 전기적 특성을 가지는 유도무기체계 원격무선통신시스템용 듀플렉서 모듈 개발)

  • Choi, Byung-Chang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.8
    • /
    • pp.709-716
    • /
    • 2016
  • In this paper, A duplexer module with temperature-insensitive electrical characteristics was proposed for remote wireless communication system. Duplexer modules are required to have performances of low insertion loss, high isolation between transmitted band and received band, harmonic suppression as well as high power durability in the system for transmitting guided information to missile flying a free space on the ground. The proposed duplexer module are consist of transmission bandpass filter and receiving bandpass filter which are connected to common antenna port, planar coupler for output power monitoring and low pass filter for harmonic attenuation of power amplifier and coaxial cavity resonator. The material and dimensions of the resonator are determined for minimum frequency shift by temperature variation using 3D EM simulation. The measured results of the prototype showed a good agreement with the simulation results, and it should be well applied not only for guided weapon systems but also for any other communication systems such as remote radio head.

The Study of the Automation Systems using Satellite Communications (위성통신을 이용한 자동화 감시 시스템 구축 연구)

  • Kim, Myong-Soo;Hyun, Duck-Hwa;Cho, Seon-Ku;Kim, Choong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2540-2542
    • /
    • 2002
  • In recent years, it is a worldwide trend that many power utilities focus their attention to employ up-to-date communication technology to the automation of their power plants and distribution systems. Automation Systems in Korea was installed using twisted pair cable(TPC), power line carrier(PLC), coaxial cable(CA), wireless network(wireless data, TRS and PCS). Among the communication media only Satellite Communication guarantees the reliable communication in case of emergency such as a flood, a heavy snow and an earthquake. It can integrate two-way satellite systems to existent nationwide SCADA controlling points of electric power transmission & distribution system that enables real time remote monitoring and controlling automatically. This paper presents some of design efforts for the satellite communication network as the media of Automation Systems.

  • PDF

Measurements of dielectric constants of soil to develop a landslide prediction system

  • Rhim, Hong Chul
    • Smart Structures and Systems
    • /
    • v.7 no.4
    • /
    • pp.319-328
    • /
    • 2011
  • In this study, the measurements of the dielectric constants of soil at 900 MHz and 1 GHz were made to relate those properties to the moisture content of the soil. This study's intention was to use the relationship between the dielectric constant and the moisture content to develop a landslide prediction system. By monitoring the change of the moisture content within the soil using ground penetrating radar (GPR) systems in the field, the possibility of a landslide is expected to be detected. To establish a database for the dielectric constants and the moisture content, the measurements of soil samples were made using both an open-ended dielectric coaxial probe and the GPR. Based on the measurement results, correlations between the GPR and reflector for each frequency at 900 MHz and 1 GHz were found for the dielectric constants and the moisture content. Finally, the mechanism of the measurement device to be implemented in the field is suggested.

An original device for train bogie energy harvesting: a real application scenario

  • Amoroso, Francesco;Pecora, Rosario;Ciminello, Monica;Concilio, Antonio
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.383-399
    • /
    • 2015
  • Today, as railways increase their capacity and speeds, it is more important than ever to be completely aware of the state of vehicles fleet's condition to ensure the highest quality and safety standards, as well as being able to maintain the costs as low as possible. Operation of a modern, dynamic and efficient railway demands a real time, accurate and reliable evaluation of the infrastructure assets, including signal networks and diagnostic systems able to acquire functional parameters. In the conventional system, measurement data are reliably collected using coaxial wires for communication between sensors and the repository. As sensors grow in size, the cost of the monitoring system can grow. Recently, auto-powered wireless sensor has been considered as an alternative tool for economical and accurate realization of structural health monitoring system, being provided by the following essential features: on-board micro-processor, sensing capability, wireless communication, auto-powered battery, and low cost. In this work, an original harvester device is designed to supply wireless sensor system battery using train bogie energy. Piezoelectric materials have in here considered due to their established ability to directly convert applied strain energy into usable electric energy and their relatively simple modelling into an integrated system. The mechanical and electrical properties of the system are studied according to the project specifications. The numerical formulation is implemented with in-house code using commercial software tool and then experimentally validated through a proof of concept setup using an excitation signal by a real application scenario.

Design of an Optical System for a Space Target Detection Camera

  • Zhang, Liu;Zhang, Jiakun;Lei, Jingwen;Xu, Yutong;Lv, Xueying
    • Current Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.420-429
    • /
    • 2022
  • In this paper, the details and design process of an optical system for space target detection cameras are introduced. The whole system is divided into three structures. The first structure is a short-focus visible light system for rough detection in a large field of view. The field of view is 2°, the effective focal length is 1,125 mm, and the F-number is 3.83. The second structure is a telephoto visible light system for precise detection in a small field of view. The field of view is 1°, the effective focal length is 2,300 mm, and the F-number is 7.67. The third structure is an infrared light detection system. The field of view is 2°, the effective focal length is 390 mm, and the F-number is 1.3. The visible long-focus narrow field of view and visible short-focus wide field of view are switched through a turning mirror. Design results show that the modulation transfer functions of the three structures of the system are close to the diffraction limit. It can further be seen that the short-focus wide-field-of-view distortion is controlled within 0.1%, the long-focus narrow-field-of-view distortion within 0.5%, and the infrared subsystem distortion within 0.2%. The imaging effect is good and the purpose of the design is achieved.

Time Resolution Improvement of MRI Temperature Monitoring Using Keyhole Method (Keyhole 방법을 이용한 MR 온도감시영상의 시간해상도 향상기법)

  • Han, Yong-Hee;Kim, Tae-Hyung;Chun, Song-I;Kim, Dong-Hyeuk;Lee, Kwang-Sig;Eun, Choong-Ki;Jun, Jae-Ryang;Mun, Chi-Woong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.31-39
    • /
    • 2009
  • Purpose : This study proposes the keyhole method in order to improve the time resolution of the proton resonance frequency(PRF) MR temperature monitoring technique. The values of Root Mean Square (RMS) error of measured temperature value and Signal-to-Noise Ratio(SNR) obtained from the keyhole and full phase encoded temperature images were compared. Materials and Methods : The PRF method combined with GRE sequence was used to get MR temperature images using a clinical 1.5T MR scanner. It was conducted on the tissue-mimic 2% agarose gel phantom and swine's hock tissue. A MR compatible coaxial slot antenna driven by microwave power generator at 2.45GHz was used to heat the object in the magnetic bore for 5 minutes followed by a sequential acquisition of MR raw data during 10 minutes of cooling period. The acquired raw data were transferred to PC after then the keyhole images were reconstructed by taking the central part of K-space data with 128, 64, 32 and 16 phase encoding lines while the remaining peripheral parts were taken from the 1st reference raw data. The RMS errors were compared with the 256 full encoded self-reference temperature image while the SNR values were compared with the zero filling images. Results : As phase encoding number at the center part on the keyhole temperature images decreased to 128, 64, 32 and 16, the RMS errors of the measured temperature increased to 0.538, 0.712, 0.768 and 0.845$^{\circ}C$, meanwhile SNR values were maintained as the phase encoding number of keyhole part is reduced. Conclusion : This study shows that the keyhole technique is successfully applied to temperature monitoring procedure to increases the temporal resolution by standardizing the matrix size, thus maintained the SNR values. In future, it is expected to implement the MR real time thermal imaging using keyhole method which is able to reduce the scan time with minimal thermal variations.

  • PDF