• Title/Summary/Keyword: coaxial

Search Result 1,004, Processing Time 0.023 seconds

A Study on the Determination of Slot's Number of Rotor to Reduce Noise and Vibration and Design the 3-Phase Induction Motor Considering Kinetic Energy in Flywheel Energy Storage System (운동 에너지를 고려한 Flywheel Energy Storage System 설계와 진동 저감을 위한 3상 유도기의 슬롯수 산정에 관한 연구)

  • Ryu, Jae Ho;Kim, Hui Min;Lee, Chee Woo;Park, Gwan Soo;Jeong, Dong Wook
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Flywheel Energy Storage System (FESS) is composed by flywheel generating rotating potential energy and motor/generator set charging and discharging electric potential energy. The flywheel and motor/generator is connected by rotating shaft. And torque characteristics of motor/generator part can influence charging and mechanical traits of FESS. This paper analyze about motor/generator design method of 5 [kWh] FESS and torque ripple, harmonic effects by change of slots. At First, this paper proposes a method to estimate the flywheel size and the rotor size of the motor from the the rotational kinetic energy by inertia of FESS. The number of induction motor rotor slots for torque ripple reduction in the high speed operation region is selected. This paper performs to reduce the noise and vibration of the flywheel composed of coaxial with motor/generator and flywheel and realize the high efficiency.

Georadar System Using Network-Analyzer (네트웍 분석기를 이용한 레이다탐사 시스템의 구현)

  • Cho Seong-Jun;Kim Jung-Ho;Lee Seoung Kon;Son Jeong-Sul;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.272-279
    • /
    • 2002
  • During field survey of ground penetrating radar or borehole radar, we often encounter some problems which could be solved easily by modifying structure of the system such as antenna length, shape or array. In addition, it is necessary that the user could easily modify configuration of the radar system na test various array of antennas in order to verify and confirm numerical modeling results concerning radar antennas. We have developed network-analyzer-based, stepped-frequency georadar system. This system had been comprised with coaxial cable to confirm possibility of the system, then we have upgraded the system to use optical cable that is composed of optical/electric transducers, electric/optical transducers, amp, pre-amp and antennas. The software for the aquisition of data has been developed to control the system automatically using PC with GPIB communication and to display the obtained data graphically. We have tested the system in field survey na the results have been compared with those of RAMAC/GPR system.

Emission spectroscopic diagnostics of argon arc Plasma in Plasma focus device for advanced lithography light source (차세대 리소그래피 빛샘 발생을 위한 플라스마 집속장치의 아르곤 아크 플라스마의 방출 스펙트럼 진단)

  • Hong, Y.J.;Moon, M.W.;Lee, S.B.;Oh, P.Y.;Song, K.B.;Hong, B.H.;Seo, Y.H.;Yi, W.J.;Shin, H.M.;Choi, E.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.6
    • /
    • pp.581-586
    • /
    • 2006
  • We have generated the argon plasma in the diode chamber based on the established coaxial electrode type and investigated the emitted visible light for emission spectroscopy. We applied various voltages $2\sim3.5kV$ to the device by 0.5kV, and obtained the emission spectrum data for the focused plasma in the diode chamber on the argon pressure of 330 mTorr. The Ar I and Ar II emission line are observed. The electron temperature and ion density have been measured by the Boltzmann plot and Saha equation from assumption of local thermodynamic equilibrium (LTE) The Ar I and Ar II ion densities have been calculated to be $\sim10^{15}/cc\;and\;~10^{13}/cc$, respectively, from Saha equation.

Micro-Spot Atmospheric Pressure Plasma Production for the Biomedical Applications

  • Hirata, T.;Tsutsui, C.;Yokoi, Y.;Sakatani, Y.;Mori, A.;Horii, A.;Yamamoto, T.;Taguchi, A.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.44-45
    • /
    • 2010
  • We are currently conducting studies on culturing and biocompatibility assessment of various cells such as neural stem cells and induced pluripotent stem cells(IPS cells) on carbon nanotube (CNT), on nerve regeneration electrodes, and on silicon wafers with a focus on developing nerve integrated CNT based bio devices for interfacing with living organisms, in order to develop brain-machine interfaces (BMI). In addition, we are carried out the chemical modification of carbon nanotube (mainly SWCNTs)-based bio-nanosensors by the plasma ion irradiation (plasma activation) method, and provide a characteristic evaluation of a bio-nanosensor using bovine serum albumin (BSA)/anti-BSA binding and oligonucleotide hybridization. On the other hand, the researches in the case of "novel plasma" have been widely conducted in the fields of chemistry, solid physics, and nanomaterial science. From the above-mentioned background, we are conducting basic experiments on direct irradiation of body tissues and cells using a micro-spot atmospheric pressure plasma source. The device is a coaxial structure having a tungsten wire installed inside a glass capillary, and a grounded ring electrode wrapped on the outside. The conditions of plasma generation are as follows: applied voltage: 5-9 kV, frequency: 1-3 kHz, helium (He) gas flow: 1-1.5 L/min, and plasma irradiation time: 1-300 sec. The experiment was conducted by preparing a culture medium containing mouse fibroblasts (NIH3T3) on a culture dish. A culture dish irradiated with plasma was introduced into a $CO_2$-incubator. The small animals used in the experiment involving plasma irradiation into living tissue were rat, rabbit, and pick and are deeply anesthetized with the gas anesthesia. According to the dependency of cell numbers against the plasma irradiation time, when only He gas was flowed, the growth of cells was inhibited as the floatation of cells caused by gas agitation inside the culture was promoted. On the other hand, there was no floatation of cells and healthy growth was observed when plasma was irradiated. Furthermore, in an experiment testing the effects of plasma irradiation on rats that were artificially given burn wounds, no evidence of electric shock injuries was found in the irradiated areas. In fact, the observed evidence of healing and improvements of the burn wounds suggested the presence of healing effects due to the growth factors in the tissues. Therefore, it appears that the interaction due to ion/radicalcollisions causes a substantial effect on the proliferation of growth factors such as epidermal growth factor (EGF), nerve growth factor (NGF), and transforming growth factor (TGF) that are present in the cells.

  • PDF

Development and Characterization of High Frequency Ultrasonic Transducer Using PVDF and P(VDF-TrFE) (PVDF 및 P(VDF-TrFE)를 이용한 고주파수 수침용 초음파 탐촉자 개발 및 평가)

  • Kim, Ki-Bok;Kim, Byoung-Geuk;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • The high frequency ultrasonic transducers using polyvinyliden fluoride(PVDF) and polyvinylidene fluoride trifluorethyylene(P(VDF-TrFE)) were developed. The characteristics of fabricated high frequency ultrasonic transducer such as beam diameter, high frequency ultrasonic detection field and amplitude of the first pulse echo signal from the test target in the water were analyzed. The high frequency ultrasonic detection field was affected by the length of coaxial cable between high frequency transducer and ultrasonic pulser/receiver. As the size of the test target increased, the high frequency detection field decreased and the amplitude of a reflection signal increased. The peak amplitude of the first pulse echo signal of P(VDF-TrFE) transducer was higher than that of PVDF transducer. The high frequency ultrasonic detection field of PVDF transducer was wider than that of P(VDF-TrFE) transducer. With C-scan testing, the developed high frequency ultrasonic transducer could detect the 30 to $100{\mu}m$ of hydrogen induced crack of steel specimen by C-scan testing.

A Study on Removal Efficiency of VOCs using Vortex Cyclones (보텍스 사이클론을 이용한 VOCs 제거효율에 관한 연구)

  • Lim, Gye-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.194-199
    • /
    • 2005
  • The principle of vortex cyclone was applied to enhance the treatment efficiency of waste air streams containing particulate matters, phenol, and others. Adsorption, condensation, and/or coagulation could be induced at low temperature zone formed by Joule-Thomson expansion as the pressurized air and pulverized activated carbon were introduced at the tangential direction into the cyclone system applied with the coaxial funnel tube of vortex cyclone. Easily condensible vapors were adsorbed and/or condensed forcibly on coagulated or condensed materials which were formed as cores for coagulation or condensation by themselves or on pulverized activated carbons. These types of coagulation or condensation rates were rapidly promoted by increase in their diameter. The maximum removal efficiency obtained from this experiment for the removal of carbon dioxide and phenol was about 87.3 and 93.8 percent, respectively. Phenol removal efficiency was increased with the relative humidities and enhanced by pulverized activated carbon added. The Joule-Thomson coefficients were increased with the pressure of air injected in the range of the relative humidities between 10% and 50%. It is believed that the moisture, particulate matters, and the pressure of the process air introduced could control the removal efficiency of VOCs.

Evaluation of the Femoral Stem Implant in Canine Total Hip Arthroplasty: A Cadaver Study

  • Cho, Hyoung Sun;Kwon, Yonghwan;Kim, Young-Ung;Kang, Jin-Su;Lee, Kichang;Kim, Namsoo;Kim, Min Su
    • Journal of Veterinary Clinics
    • /
    • v.36 no.1
    • /
    • pp.53-61
    • /
    • 2019
  • Total hip arthroplasty (THA) is a successful surgical treatment for both patients with chronical lameness and dogs who are nonresponsive to medical treatments, providing excellent joint function for returning dogs to the normal gait in 80% to 98% of hip dysplasia (HD) patients. The THA surgical implant system manufactured by BioMedtrix and Kyon are today widely accepted. When comparing the BioMedtrix biological fixation (BFX) system to the BioMedtrix cemented fixation (CFX) system, the many advantages of BFX, which include longer potential implant life, decreased risk of postoperative or later infection, and better implant stability, become evident. However, BFX implies a greater risk of femoral fracture during reaming and requires a more precise surgical technique to achieve good implant fit, given the press-fit nature of cementless THA. The purposes of this study are to both describe the mistakes and complications during stem implantation for beginner surgeons with both the BFX and the CFX systems and to document the initial result of 12 implantations in canine cadavers. Given the detailed evaluations of 3 specialists, who are Diplomate American College of Veterinary Surgeons (DACVS), only 3 of 11 stems were appropriately sized. Specifically, 6 stems were anteverted rather than being retroverted; further, although 7 stems were coaxial with the femoral long axis in the frontal plane, the other stems were in the varus at the frontal plane, with the proximal medial stem adjacent to the medial femoral cortex. Moderate angulation from the cranial to the caudal directions was found in 4 cases in the sagittal plane. Additionally, 1 case of femoral fissure and 1 case of perforated femoral cortex were reported. It is not easy for surgeons performing cementless THA for the first time to achieve a good result, even though they completed an educational course about it and given that catastrophic complications often occurred during early surgical clinical cases. Therefore, ex-vivo studies are sincerely required to get an expertise by rehearsing the preparation of the femoral envelop in isolated bones. Further studies should be conducted to achieve both highly accurate implant size and correct orientation during the preoperative planning. Additionally, surgeons' learning curve should be examined in future investigations.

Vibratory Loads Reduction of a Coaxial Rotorcraft Using Individual Blade Control Scheme (개별 블레이드 제어(IBC) 기법을 이용한 동축반전 회전익기의 진동하중 억제에 관한 연구)

  • Hong, Seonghyun;You, Younghyun;Jung, Sung Nam;Kim, Do-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.364-370
    • /
    • 2019
  • In this paper, an individual blade control (IBC) methodology is applied to find the best input scenario for vibratory hub loads reduction of XH-59A co-axial rotorcraft in high speed flight. A comprehensive aeromechanics analysis code CAMRAD II is employed to analyze the aircraft. A parametric study is conducted for optimum IBC inputs leading to the maximum vibration reduction. Numerical results demonstrate that up to 50% reduction in the hub vibration index is obtained for an IBC input at 3/rev frequency with the amplitude and phase angle of 0.5 deg. and 300 deg., respectively. The upper rotor exhibits as much as 6% more vibration reduction as compared to that of the lower rotor due to a clean inflow characteristic of the rotor. It is found that further vibration reduction gain is reached for IBC inputs with advancing-side only control. The hub vibration becomes reduced by up to 17% in reference to that with full rotor disk control. It is noted that the additional gain is obtained with significantly less power input with the advancing-side only control.

Development of Preliminary Conceptual Design/ Comprehensive Analysis Programs for Next Generation Rotorcraft (차세대 회전익 기본개념설계/통합해석 프로그램의 개발)

  • Oh, Sejong;Park, Donghoon;Ji, Hyung Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.75-84
    • /
    • 2021
  • The authors had presented two previous papers[1,2] on Helicopter/Rotorcraft develoment in Europe and US. Meanwhile, the next generation rotorcrafts, currently under development in US and Europe, have new configurations (tilt-rotor, coaxial, compound) of rotor-type vertical takeoff/landing rotorcrafts to overcome the disadvantages of traditional helicopters. For developing these new types of rotorcrafts, the upgraded conceptual design/comprehensive programs are required. In US and Europe, they are already developing new program tools with their technologies and database obtained during more than last half centuries. For us, many academia, research institutes and industrial engineers have experienced and developed core technologies on rotorcrafts (aerodynamics, structural analysis, flight dynamics, and noise analysis etc.) comparable to US and Europe during last couple of decades of developing helicopters and various configurations of rotorcrafts. In this paper, the pros and cons of conceptual design/comprehensive tools currently used in US and Europe have been summarized. Furthermore, the possibilities and problems to develope our own design and analysis tools have been studied.

Research and Verification of Distance and Dead Thickness Changes of Coaxial HPGe Detectors using PENELEOPE Simulation (PENELEOPE 시뮬레이션을 이용한 동축 HPGe 검출기의 거리 및 외부 접촉 층 두께 변화 연구 및 검증)

  • Eun-Sung Jang;Byung-In Min
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.2
    • /
    • pp.175-184
    • /
    • 2023
  • Based on the actual shape of the detector and the data provided by the manufacturer, the shape of the detector was implemented through Penelope simulation and applied to the appropriate four-layer thickness based on the efficiency obtained from the measurements. Efficiency calculations to determine the effect of the simulated number of Full Energy Peak Efficiency(FEPE) channels in the detector and the outside contact layer in the crystal on the Full Energy Peak Efficiency were performed for various four-layer thicknesses of 0.3, 0.5, 0.7, 1.0, 1.2, and 1.4 mm using the Penelope Code. When the thickness of the external contact layer was increased by 5 times, the Full Energy Peak Efficiency decreased by about 36% for 59.50 keV, and the Full Energy Peak Efficiency decreased by 10% for 1836. In addition, as it increased by 10 times, the Full Energy Peak Efficiency decreased by about 20% for 59.54 keV, and 7% for 1836.01 keV. The Penelope simulated Full Energy Peak Efficiency channel decreases exponentially with the increase in the four layers. In addition, it was confirmed that the total effect curve was well matched with a relative difference of less than 3.5% in the 0.3-1.4 mm dead layer thickness region. However, it was found that the inhomogeneous dead layer is still a parameter in the Monte Carlo model.