• Title/Summary/Keyword: coating window

Search Result 52, Processing Time 0.026 seconds

Rheological Properties and Roll Coating Dynamics of Basecoats for Precoated Automotive Metal Sheets (자동차 선도장 강판용 베이스코트의 유변학적 특성 및 롤코팅 동적 거동)

  • Lee, Dong Geun;Hwang, Ji Won;Kim, Kyung Nam;Noh, Seung Man;Jung, Hyun Wook
    • Journal of Adhesion and Interface
    • /
    • v.16 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • In this study, rheological properties and flow dynamics in roll coating process of basecoat paints have been investigated for automotive precoated metal (PCM) sheet applications. Various rheological properties for basecoats with three colors (black, blue, and silver), such as shear viscosity data at room temperature and elastic/viscous moduli under thermal curing condition, have been measured using a rotational rheometer. It is found that the relative portion of function groups inside basecoats and their viscosity level have greatly affected the formation of crosslinked networks by thermal curing. Also, operability coating windows for basecoats have been established in three-roll coating process system by observing their flow instabilities such as ribbing and cascade. It is confirmed that rheological approaches applied in this study have been usefully applied to develop environmentally-friendly PCM coating technology and optimally control the coating operations for non-Newtonian PCM paints.

Corrosion visualization under organic coating using laser ultrasonic propagation imaging

  • Shi, Anseob;Park, Jinhwan;Lee, Heesoo;Choi, Yunshil;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.301-309
    • /
    • 2022
  • Protective coatings are most widely used anticorrosive structures for steel structures. The corrosion under the coating damages the host material, but this damage is completely hidden. Therefore, a field-applicable under-coating-corrosion visualization method has been desired for a long time. Laser ultrasonic technology has been studied in various fields as an in situ nondestructive inspection method. In this study, a comparative analysis was carried out between a guided-wave ultrasonic propagation imager (UPI) and pulse-echo UPI, which have the potential to be used in the field of under-coating-corrosion management. Both guided-wave UPI and pulse-echo UPI were able to successfully visualize the corrosion. Regarding the field application, the guided-wave UPI performing Q-switch laser scanning and piezoelectric sensing by magnetic attachment exhibited advantages owing to the larger distance and incident angle in the laser measurement than those of the pulse-echo UPI. Regarding the corrosion visualization methods, the combination of adjacent wave subtraction and variable time window amplitude mapping (VTWAM) provided acceptable results for the guided-wave UPI, while VTWAM was sufficient for the pule-echo UPI. In addition, the capability of multiple sensing in a single channel of the guided-wave UPI could improve the field applicability as well as the relatively smaller size of the system. Thus, we propose a guided-wave UPI as a tool for under-coating-corrosion management.

Dynamics and die design in continuous and patch slot coating processes (Continuous 와 pattern slot 코팅 공정에서의 유동특성과 다이 설계)

  • Kim Su-Yeon;Shim Seo-Hoon;Shin Dong-Myeong;Lee Joo-Sung;Jung Hyun-Wook;Hyun Jae-Chun
    • Proceedings of the Korean Society of Rheology Conference
    • /
    • 2006.06a
    • /
    • pp.81-84
    • /
    • 2006
  • Slot coating process, in continuous and patch modes, has been applied for the many precise coating products, e.g., flat panel displays and second batteries. However, manufacturing uniform coating products is not a trivial task at high-speed operations because various flow instabilities or defects such as leaking, bubbles, ribbing, and rivulets are frequently observed in this process. It is no wonder, therefore, that many efforts to understand the various aspects of dynamics and coating windows of this process have been made both in academia and industry. In this study, as the first topic, flow dynamics within the coating bead in slot coating process has been investigated using the one-dimensional viscocapillary model by lubrication approximation and two-dimensional model by Flow-3D software. Especially, operability windows in both 1D and 2D cases with various slot die lip designs have been successfully portrayed. Also, effects of process conditions like viscosity and coating gap size on slot coating window have been analyzed. Also, some experiments to find minimum coating thickness and coating windows have been conducted using slot die coater implemented with flow visualization device, corroborating the numerical results. As the second topic, flow dynamics of both Newtonian and Non-Newtonian fluids in patch or pattern slot coating process, which is employed in manufacturing IT products such as secondary batteries, has been investigated for the purpose of optimal process designs. As a matter of fact, the flow control in this system is more difficult than in continuous case because od its transient or time-dependent nature. The internal die and die lip designs for patterned uniform coating products have been obtained by controlling flow behaviors of coating liquids issuing from slot. Numerical simulations have been performed using Fluent and Flow-3D packages. Flow behavior and pressure distribution inside the slot die has been compared with various die internal shapes and geometries. In the coating bead region, efforts to reduce irregular coating defects in head and tail parts of one patterned coating unit have been tried by changing die lip shapes. It has been concluded that optimal die internal design gas been developed, guaranteeing uniform velocity distribution of both Newtonian and shear thinning fluids at the die exit. And also optimal die lip design has been established, providing the longer uniform coating layer thickness within one coating unit.

  • PDF

Study on the Friction Wear Characteristic of the Surface of Door guide rail for Automobile (자동차용(自動車用) Door guide rail 표면의 마찰마모 특성에 관한 연구)

  • Han, Chang-Woo;Son, Jae-Hwan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • Door guide rail is the core part which guides window when it moves up and down. But when the method of grease lubrication in the core has been used for a long times, its lubrication performance has been weakened. Therefore the method of the solid lubrication such as teflon(PTFE) coating in the rail has been studied to be increased the performance in these days. In this study the friction wear characteristic the surface with teflon coating of door guide rail for automobile has been researched. In 1, 20 Hz frequency friction wear tests the friction coefficient are below 0.188 and 0.213. In indicate test the wear depth is very slight. Therefore the durability to the friction wear in the surface with teflon coating of door guide rail is good. In addition to, the result of this study can make efficient use to a basic study to develop method of test evaluation to door guide rail surface grade. Especially this study will contribute to improve the quality of automobile parts.

  • PDF

Design Program of Deck Plate Slab System with Non-welding Truss Type Reinforced Bar (철근트러스 압접 데크플레이트 바닥 구조의 설계 프로그램)

  • Yoon, Myung-Ho;Oh, Sang-Hoon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.8 no.1
    • /
    • pp.57-64
    • /
    • 2008
  • There are many problems in present truss-deck slab system for example welding defect, segregation, water leakage, rust and tarnish etc. These problems may be caused by spot welding thin galvanized steel plate and lattice bar. The TOX Joining Systems is to join metal sheets of different material and thickness with and without coating or painting without adding heat or a joining part. Newly developed TOX-deck slab system using non-welding joint is free from above mentioned problems. The objects of this study are suggestion of design strength of TOX joint by experimental and statistical analyses and development of window based program to design the TOX-deck slab system.

  • PDF

A Comparison of Thermal Performance of Double Low-E Glazing Window according to Various Material (더블로이유리 적용 창호의 구성요소에 따른 단열성능 비교 실험)

  • Jang, Cheol-Yong;Ahn, Byung-Lip;Kim, Chi-Hoon;Kim, Jun-Sub;Lee, Sung-Jae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.133-137
    • /
    • 2011
  • Low-e glazing is classified as soft low-e glazing and hard low-e glazing. Hard low-e glazing can be temperable and its handling is comfortable because its coating film is a oxide film generated at high temperatures. But there is a fatal weakness that its insulation performance and shielding performance are lower compared to soft low-e glazing by low electrical conductivity of coating film. Soft low-e glazing is excellent because its coating film consists of Ag that is excellent electrical conductivity and it has strength that can supply various product consumers want. But soft low-e glazing has weaknesses that temperable and handling are difficult because Ag is oxidized easily. Therefore this study analyzes thermal performance of glazing by changing filling gas according to applying low-e glazing through simulation to judge performance before making sample. After this process, a comparative experimental study was done through TVS by making temperable low-e glazing.

  • PDF

Abrasion of abutment screw coated with TiN

  • Jung, Seok-Won;Son, Mee-Kyoung;Chung, Chae-Heon;Kim, Hee-Jung
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.2
    • /
    • pp.102-106
    • /
    • 2009
  • STATEMENT OF PROBLEM. Screw loosening has been a common complication and still reported frequently. PURPOSE. The purpose of this study was to evaluate abrasion of the implant fixture and TiN coated abutment screw after repeated delivery and removal with universal measuring microscope. MATERIAL AND METHODS. Implant systems used for this study were Osstem and 3i. Seven pairs of implant fixtures, abutments and abutment screws for each system were selected and all the fixtures were perpendicularly mounted in liquid unsaturated poly-esther with dental surveyor. After 20 times of repeated closing and opening test, the evaluation for the change of inner surface of implant and TiN-coated abutment screw, and weight loss were measured. Mann-Whitney test with SPSS statistical software for Window was applied to analyze the measurement of weight loss. RESULTS. TiN-coated abutment screws of Osstem and 3i showed lesser loss of weight than non-coated those of Osstem and 3i (P < .05, Mann-Whitney test). CONCLUSION. Conclusively, TiN coating of abutment screw showed better resistance to abrasion than titanium abutment screw. It was concluded that TiN coating of abutment screw would reduce the loss of preload with good abrasion resistance and low coefficient of friction, and help to maintain screw joint stability.

Preparation of O-I hybrid sols using alkoxysilane-functionalized amphiphilic polymer precursor and their application for hydrophobic coating (알콕시 실란기능화 양친성 고분자 전구체를 이용한 유-무기 하이브리드 졸 제조 및 이를 이용한 발수 코팅)

  • Lee, Dae-Gon;Kim, Nahae;Kim, Hyo Won;Kim, Juyoung
    • Journal of Adhesion and Interface
    • /
    • v.20 no.4
    • /
    • pp.146-154
    • /
    • 2019
  • In this study, alkoxysilane-functionalized amphiphilic polymer (AFAP), which have hydrophilic segment and hydrophobic segment functionalized by alkoxysilane group at the same backbone, was synthesized and used as a dispersant and control agent for reaction rate in the preparation of colloidally stable organic-inorganic (O-I) hybrid sols. After reaction with fluorosilane compounds, fluorinated O-I hybrid sols were prepared and coated onto glass substrate to form hydrophobic O-I hybrid coating films through low-temperature curing process. Surface hardness and hydrophobicity of cured coating films were varied with type of solvent and composition of AFAP and fluorinated alkoxysilane compounds. At appropriate solvent and composition of fluorinated alkoxysilane compounds, O-I hybrid coating film having high transparency and surface hardness could be prepared, which could be applicable to cover window of solar cell and displays.

Thermal performance evaluation of Temperable Low-e glass window through Heating Energy consumption Analysis (난방에너지 사용량 분석을 통한 후강화 로이유리 창호의 단열성능 평가)

  • Jang, Cheol-Yong;Kim, Jeong-Gook;Ahn, Byung-Lip;Kim, Jun-Sup;Haan, Chan-Hoon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.200-205
    • /
    • 2012
  • In the high oil price age, intensification of energy efficiency promotion in the building sector is required. Windows are dominating in large percent of whole building loads, and are regarding as the primary target of energy efficiency. In this study, in order to reduce heat loss of buildings, we investigate the thermal performance properties of Temperable Low-e glazing coated Ag membrane that has high electrical conductivity. The Temperable Low-e glazing windows has high insulation and shading properties, and it has strength that can supply various product which consumers want. In order to evaluate thermal performance of temperable windows, we install single low-e windows and double low-e windows in the experimental chamber and analysis the comparison heating energy consumption between single and double Low-e glazing windows. performance evaluation was conducted.

  • PDF

Challenges in the Production of Thin Coatings at High Line Speed

  • Michel, Dubois;Luc, Warichet;Jose, Callegari
    • Corrosion Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Cost reduction of products is and will always be a key objective of industrials. However, it is well identified that the wiping process reaches its limits at high line speed in general and especially thin coatings. If wiping models predict that it is possible to reach 32-37 g/$m^2$ of pure Zinc at 180 m/min provided the nozzle to strip distance can be reduced to 6mm, the possibility to reach that process window industrially with sufficient robustness is debated. 3 key problems are reviewed and analyzed: Zinc splashing and liquid drop emissions of various forms, the production of skimming and the noise generated by the nozzles. The available data and models are firstly used to predict phenomena. Secondly, videos and pictures from the lines showing what really happens on the edges especially in case of a strip width change are analyzed. Whereas the predicted level of skimming to remove from the pot is expected very high, it turns out that the target may be very close to the full splashing phenomena and that the most critical industrial situation is related to strip specification changes. It is then expected that the industrial feasibility of the 32-37 g/$m^2$ at 180 m/min will depend strongly on the amount of incoming strip with the same width that can be processed continuously.