• 제목/요약/키워드: coating speed up

검색결과 44건 처리시간 0.026초

자동차 선도장을 위한 롤코팅 공정에서 고분자 도료의 동적 거동 및 불안정성 (Dynamics and Instability of a Polymeric Paint in Roll Coating Process for Automotive Pre-coating Application)

  • 김진호;이인준;노승만;강충열;남준현;정현욱;박종명
    • 폴리머
    • /
    • 제35권6호
    • /
    • pp.574-579
    • /
    • 2011
  • 자동차 선도장 강판을 위한 핵심 응용기술로서 3-롤코팅 공정을 연구하였다. 본 연구를 위한 3-롤코팅은 저장조로부터 코팅액을 끌어 올리는 pick-up롤, 적절한 코팅 두께로 계량시키기 위한 계량롤, 강판에 직접 코팅시키기 위한 applicator 롤로 구성되어 있다. 전단담화의 유변물성을 갖는 고분자 도료의 코팅 유동 특성과 코팅 운전 영역을 pickup 롤과 계량롤 사이의 속도비와 간격 등의 공정조건과의 상관관계를 통해 고찰하였다. 안정한 코팅 영역에서, 간격이 크거나 속도비가 작을수록 코팅 두께는 증가하였다. 또한, ribbing과 cascade라는 불안정성은 각각 속도비가 낮고 높을 때 관찰되었다. 특히, 속도비가 낮을때, ribbing의 파장과 심각도가 증가함을 확인하였다.

코팅공정 개선에 의한 TiN코팅 고속도강 공구의 내마모특성 향상 (Enhancenent of Wear Resistance of TiN Coated High Speed Steel Tools through Improving some Coating Processes)

  • Lee, Y.M.;Son, Y.H.;Kim, H.S.;Back, J.Y.
    • 한국정밀공학회지
    • /
    • 제13권11호
    • /
    • pp.32-37
    • /
    • 1996
  • Using the are ion plating(AIP) process, TiN coating was deposited onto high speed steel substrates. The effects of coating thickness, titanisum interlayer and shield on wear resisting capability of the coated tools were investigated. In order to promote good adhesion between the substrate and the TiN coating a thin Ti interlayer was deposited. A shield was set up also between Ti target and high speed steel substrates to prevent molten droplets from reaching the substrate. Three series of varying thickness of TiN coated layer were prepared with or without the Ti interlayer, and with or without the shield. The tools with the Ti layer and the shield showed longer tool lifes than those of other series of tools and the commercially available TiN coated HSS tools, by up to 70%.

  • PDF

DLC (ta-C) 후막코팅을 위한 트라이볼로지 코팅 연구 (Tribology Coating Study of Thick DLC (ta-C) Film)

  • 장영준;강용진;김기택;김종국
    • Tribology and Lubricants
    • /
    • 제32권4호
    • /
    • pp.125-131
    • /
    • 2016
  • In recent years, thick ta-C coating has attracted considerable interest owing to its existing and potential commercial importance in applications such as automobile accessories, drills, and gears. The thickness of the ta-C coating is an important parameter in these applications. However, the biggest problems are achieving efficient coating and uniformity over a large area with high-speed deposition. Feasibility is confirmed for the ta-C coating thickness of up to 9.0 µm (coating speed: 3.0 µm/h, fixed substrate) using a single FCVA cathode. The thickness was determined using multiple coating cycles that were controlled using substrate temperature and residual stresses. In the present research, we have designed a coating system using FCVA plasma and produced enhanced thick ta-C coating. The system uses a specialized magnetic field configuration with stabilized DC arc plasma discharge during deposition. To achieve quality that is acceptable for use in automobile accessories, the magnetic field, T-type filters, and 10 pieces of a multi-cathode are used to demonstrate the deposition of the thick ta-C coating. The results of coating performance indicate that uniformity is ±7.6 , deposited area is 400 mm, and the thickness of the ta-C coating is up to 5.0 µm (coating speed: 0.3 µm/h, revolution and rotation). The hardness of the coating ranges from 30 to 59 GPa, and the adhesion strength level (HF1) ranges from 20 to 60 N, depending on the ta-C coating.

고농도 도공과 품질변화의 상관성 연구(2보) -도공지의 품질과 고농도 도공의 효과- (Studies on Relations between High Solid Coating and Quality Changes(II) - Effect of high solid coating on coated paper properties -)

  • 이용규;유성종;조병욱;김용식
    • 펄프종이기술
    • /
    • 제39권3호
    • /
    • pp.52-59
    • /
    • 2007
  • This paper confirms that high solid coating can increase coating speed and reduce drying cost. Low solid coating color with the synthetic thickener and high solid coating color with the rheology modifier and with higher ratio of GCC were prepared. Coated paper was then produced with an industrial coater, varying coating speed and dryer temperature in order to keep the moisture content of the coated paper constant. Coating color concentration was able to be increased from 66% to 69% and from 68% to 71% without an adverse effect on coating color rheology. With a help of the rheology modifier, the increased ratio of GCC in high solid coating did not show harmful effects on the coated paper quality.

은 박막이 코팅된 표면에서 물질전이층의 형성 및 그 트라이볼로지적 역할에 관한 연구 (A Study on the Formation and the Tribological Role of Mass Transfers Layers at Rubbing Silver-coated Surface)

  • 공호성;양승호;윤의성;김대은
    • Tribology and Lubricants
    • /
    • 제18권6호
    • /
    • pp.377-383
    • /
    • 2002
  • The tribological role of mass transfer layer was studied with silver coatings under various ranges of load and sliding speed. Silver coating was performed with a functionally gradient coating method. Tests were per-formed in dry sliding conditions, using a ball-on-disk contact configuration, at the load of 0.0196-17.64 N and the sliding speed of 20-1,000 mm/s in ambient air. Optical microscope and EPMA analyses showed that contact surfaces were covered with the mass transfer layers of agglomerated wear particles depending upon the contact conditions, and they greatly influenced the tribological characteristics of the surfaces. However, the formation of mass transfer layer was suppressed as the sliding speed increased, and above a critical sliding speed, no mass transfer layer was able to form. For building up a general framework of triboiogical behavior of the coated silver films, all test data were summarized on a map whose axes are contact pressure and sliding speed.

A comprehensive study of spin coating as a thin film deposition technique and spin coating equipment

  • Tyona, M.D.
    • Advances in materials Research
    • /
    • 제2권4호
    • /
    • pp.181-193
    • /
    • 2013
  • Description and theory of spin coating technique has been elaborately outlined and a spin coating machine designed and fabricated using affordable components. The system was easily built with interdisciplinary knowledge of mechanics, fluid mechanics and electronics. This equipment employs majorly three basic components and two circuit units in its operation. These include a high speed dc motor, a proximity sensor mounted at a distance of about 15 mm from a reflective metal attached to the spindle of the motor to detect every passage of the reflective metal at its front and generate pulses. The pulses are transmitted to a micro-controller which process them into rotational speed (revolution per minute) and displays it on a lead crystal display (LCD) which is also a component of the micro-controller. The circuit units are a dc power supply unit and a PWM motor speed controlling unit. The various components and circuit units of this equipment are housed in a metal casing made of an 18 gauge black metal sheet designed with a total area of 1, $529.2cm^2$. To illustrate the use of the spin-coating system, ZnO sol-gel films were prepared and characterized using SEM, XRD, UV-vis, FT-IR and RBS and the result agrees well with that obtained from standard equipment and a speed of up to 9000 RPM has been achieved.

CFD를 이용한 Double Layer 슬롯 다이 헤드의 메니스커스 형성 연구 (Study of Meniscus Formation in a Double Layer Slot Die Head Using CFD)

  • 김기은;박종운
    • 반도체디스플레이기술학회지
    • /
    • 제23권2호
    • /
    • pp.65-70
    • /
    • 2024
  • Using a computational fluid dynamics(CFD) simulation tool, we have provided a coating guideline for slot-die coating with a double layer slot die head. We have analyzed the fluid dynamics in terms of the coating speed, flow rate ratio, and viscosity ratio, which are critical for the stability of coating meniscus. We have identified the common coating defects such as break-up, air entrainment, and leakage by varying the coating speeds. The flow rate ratio is the critical parameter determining the wet film thickness of the top and bottom layers. It is shown that when the flow rate ratio exceeds or equals 1.8, air entrainment occurs due to insufficient hydraulic pressure in the bottom layer, even though the total flow rate remains constant. Furthermore, we have found that the flow of the bottom layer is significantly affected by the viscosity of top layer. The viscosity ratio of 4 or higher obstructs the flow of the bottom layer due to the increased hydraulic resistance, resulting in leakage. Finally, we have demonstrated that as the viscosity ratio increases from 0.1 to 10, the maximum coating speed rises from 0.4 mm/s to 1.6 mm/s, and the minimum wet film thickness decreases from 800 ㎛ to 200 ㎛.

  • PDF

은 박막이 코팅된 표면에서 물질전이층의 형성 및 그 트라이볼로지적 역할에 관한 연구 (A Study on the Formation and the Tribological Role of Mass Transfers Layers at Rubbing Silver-coated Surface)

  • 양승호;공호성;윤의성;김대은
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.45-52
    • /
    • 2002
  • The tribological role of mass transfer layer was studied with silver coatings under various ranges of load and sliding speed. Silver coating was performed with a functionally gradient coating method. Tests were performed in dry sliding conditions, using a ball-on-disk contact configuration, at the load of 0.0196-17.64 N and the sliding speed of 20-1,000 mm/s in ambient air. Optical microscope and EPMA analyses showed that contact surfaces were covered with the mass transfer layers of agglomerated wear particles depending upon the contact conditions, and they greatly influenced the tribological characteristics of the surfaces. However, the formation of mass transfer layer was suppressed as the sliding speed increased, and above a critical sliding speed, no mass transfer layer was able to form. For building up a general framework of tribological behavior of the coated silver films, all test data were summarized on a map whose axes are contact pressure and sliding speed.

  • PDF

DLC 코팅에 의한 사판식 피스톤 펌프의 저속 영역 동력 손실 개선 (Performance Improvement of a Swash Plate Type Piston Pump in the Low-Speed Range by a DLC Coating)

  • 홍예선;김종혁;이성렬
    • 드라이브 ㆍ 컨트롤
    • /
    • 제11권4호
    • /
    • pp.25-31
    • /
    • 2014
  • This paper details application of a DLC(Diamond Like Carbon)-coating to the swash plate and the ball joint of pistons that make sliding contact with the piston shoes of an axial piston pump. This process, aimed to reduce the frictional and leakage power losses of the hydrostatic piston shoe bearings at the low speed range. At lower speeds than 100rpm, the positive effects of the DLC-coating on the power loss reduction of the hydrostatic piston shoe bearings could be confirmed. These effects resulted in little improvement in volumetric efficiency of the test pump, but the mechanical efficiency could be raised by up to 5% at 100rpm; here, the DLC-coated swash plate played a more dominant role than the DLC-coated ball joint.

실험적 방법을 통한 Metal slitting saw의 형상 및 절삭 조건의 최적화 (Optimization of a geometric form and cutting conditions of a metal slitting saw by experimental method)

  • 정경득;고태조;김희술
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.934-938
    • /
    • 2000
  • Built-up edge affects the surface integrity of the machined surface and tool wear. Tool geometry and cutting conditions are very important factors to remove BUE. In this paper, we optimized the geometry of the metal slitting saw .1nd cutting conditions to remove BUE by the experiment. In general, the metal slitting saw is plain milling cutter with thickness less of a 3/16 inch. This is used for cutting workpiece where high dimensional accuracy and surface finish are necessary. The experiment was planned with Taguchi method that is based on the orthogonal array of design factors(coating, rake angle, number of tooth, cutting speed, feed rate). Response table was made by the value of the surface roughness, the optimized tool geometry and cutting conditions through response table could be determined. In addition. the relative effect of factors were identified by the variance analysis. filially. coating and cutting speed turned out important factors.

  • PDF