• Title/Summary/Keyword: coating morphologies

Search Result 75, Processing Time 0.026 seconds

Protection Effect of ZrO2 Coating Layer on LiCoO2 Thin Film

  • Lee, Hye-Jin;Nam, Sang-Cheol;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1483-1490
    • /
    • 2011
  • The protection effect of a $ZrO_2$ coating layer on a $LiCoO_2$ thin film was characterized. A wide and smooth $LiCoO_2$ thin film offers sufficient opportunity for careful observation of the reaction at the interface between cathode (coated and uncoated) and electrolyte. The formation of a $ZrO_2$ coating on a $LiCoO_2$ thin film was confirmed by secondary ion mass spectrometry. Scanning electron and atomic force microscopy were used to characterize the surface morphologies of coated and uncoated films before and after cycling. A $ZrO_2$-coated $LiCoO_2$ film showed a higher discharge capacity and rate capability than an uncoated film. This may be associated with a surface protection effect of the coating. The surface of a pristine film was damaged during cycling, whereas the coated film maintained a relatively clear surface under the same measurement conditions. This result clearly demonstrates the protection effect of a $ZrO_2$ coating on a $LiCoO_2$ thin film.

Mechanical Properties and Corrosion Resistance of Plasma Electrolytic Oxidation Coatings on AZ31 Magnesium Alloy

  • Park, Jae Seon;Jung, Hwa Chul;Shin, Kwang Seon
    • Corrosion Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 2006
  • The plasma electrolytic oxidation (PEO) process is a relatively new surface treatment technique that produces a chemically stable and environment-friendly electrolytic coating that can be applied to all types of magnesium alloys. In this study, the characteristics of oxide film were examined after coating the extruded AZ31 alloy through the PEO process. Hard ceramic coatings were obtained on the AZ31 alloy by changing the coating time from 10min to 60min. The morphologies of the surface and the cross-section of the PEO coatings were examined by scanning electron microscopy and optical microscopy, and the thickness of the coating was measured. The X-ray diffraction pattern of the coating shows that the coated layer consists mainly of the MgO and $Mg_2SiO_4$ phases after the oxidation reaction. The hardness of the coated AZ31 alloy increased with increasing coating time. In addition, the corrosion rates of the coated and uncoated AZ31 alloys were examined by salt spray tests according to ASTM B 117 and the results show that the corrosion resistance of the coated AZ31 alloy was superior to that of the un-coated AZ31 alloy.

Color properties of CNTs coated by PEDOT via electropolymerization (전기중합법으로 PEDOT가 코팅된 탄소 나노튜브의 색도 특성)

  • Park, Jong-Seol;Kim, Bu-Jong;Hwang, Young-Jin;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1153-1154
    • /
    • 2015
  • In this study, electro-polymerization was used for coating PEDOT:SDS films on CNTs, thereby producing hybrid-type electrodes. The CNTs were deposited on PET substrates using a spray method. For the fabricated hybrid electrodes, their surface morphologies, electric sheet resistances, visible transmittances, and chromatic properties were characterized as functions of the polymerization conditions used for coating PEDOT, and compared with those of conventional CNTs. The experiment results confirmed that the sheet resistance of CNTs was decreased significantly by coating of PEDOT via electropolymerization, and also indicated that the fabricated hybrid electrodes revealed desirable properties as a transparent electrode for touch screen panels.

  • PDF

Characterization of reflectance of metal mesh electrodes according to CNT-coating (탄소 나노튜브의 코팅에 따른 금속 메쉬 전극의 반사율 분석)

  • Kim, Bu-Jong;Park, Jong-Seol;Hwang, Young-Jin;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1155-1156
    • /
    • 2015
  • This study demonstrates hybrid-type transparent electrodes for touch screen panels. The hybrid-type electrodes were fabricated by coating carbon nanotubes (CNTs) on metal meshes. For the formation of metal meshes, thin films of silver (Ag) were deposited on glass substrates using a sputtering method and then pattenrned via photolithography to obtain mesh structures of which line width was $10{\mu}m$ and line-to-line spacing was $300{\mu}m$. CNTs were coated on Ag meshes by using electrophoretic deposition (EPD). For the samples of Ag meshes with/without CNTs, their surface morphologies, visible-range transmittances, and reflectances were characterized and compared. The experimental results indicated that the reflectance of Ag mesh electrodes was substantially reduced by coating of CNTs. Especially, the hybrid electrodes of Ag meshes with EPD-coated CNTs showed excellent properties such as transmittance higher than 90%, reflectance lower than 8%.

  • PDF

Hydroxyapatite+TiO2 Composite Sol Coating on Cp-Ti (Cp-Ti 표면의 Hydroxyapatite+TiO2 복합 Sol 코팅에 관한 연구)

  • Kim, Yun-Jong;Kim, Taik-Nam;Lee, Sung-Ho
    • Korean Journal of Materials Research
    • /
    • v.15 no.7
    • /
    • pp.444-447
    • /
    • 2005
  • In this study, $Hydroxyapatite+TiO_2(HAp+TiO_2)$ composite sol coatings on Cp-Ti substrates were deposited by using a sol-gel derived precursor. Prior to hydroxyapatite coating, the samples were micropolished and divided into three sets. The first set was coated with hydroxyapatite (HAp) directly on Cp-Ti. The second set was first coated with intermediate titania layer and then coated with HAp. The third set samples were coated with $HAp+TiO_2$ (50:50) composite sol. Each samples were predried at $200^{\circ}C$, and heat treated at $600^{\circ}C$. The formation of hydroxyapatite has been confirmed by XRD analyses and the substrate material was found to be oxidized with negligible amount of CaO in the coating. The NaOH treated samples showed the presence of rutile crystal. The SEM studies revealed surface morphologies of each samples. $HAp+TiO_2$ composite sol coating layer was found to be smooth. The bonding strength of each samples were calculated using pull out tests. The bonding strength of the $HAp+TiO_2$ composite sol coating on substrate was 29.35MPa.

The effect of annealing temperature and solvent on the fabrication of YBCO thin films by MOD-TFA process (MOD-TFA 공정으로 YBCO 박막제조 시 열처리 온도와 용매의 영향)

  • 허순영;유재무;김영국;고재웅;이동철
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.84-87
    • /
    • 2003
  • $YBa_2$$Cu_3$$O_{7-x}$ (YBCO) thin films were fabricated by MOD-TFA process via dip-coating method on LaAlO$_3$, (LAO) single crystalline substrates. In this study, we investigated effect of annealing temperature and solvent on the microstructure and texture of YBCO thin films. The precursor films were annealed at various temperature to improve surface morphologies and phase purities. It was shown that the films annealed at relatively lower and higher temperature exhibit low phase purity and crystallinity. The effect of various solvents on surface morphologies and second phase has been investigated.

  • PDF

Efficiency of Photovoltaic Cell with Random Textured Anti Glare (RTAG) Glass

  • Kim, Geon Ho;Jeon, Bup Ju
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.133-137
    • /
    • 2016
  • The surface treatment of cover glass for conversion efficiency of photovoltaic cell is important to reduce reflectivity and to increase the incident light. In this work, random textured anti glare (RTAG) glass was prepared by wet surface coating method. Optical properties due to the changes of surface morphology of RTAG glass were compared and conversion efficiency of photovoltaic cell was researched. Grain size and changes of surface morphologies formed with surface etching time greatly affected optical transmittance and transmission haze. Current density (Jsc) were high at the condition when surface morphologies reflection haze were low and transmission haze were high. Jsc was $40.0mA/cm^2$ at glancing angle of $90^{\circ}$. Incidence light source was strongly influenced by surface treatment of cover glass at high incidence angle but was hardly affected light source at the low angle of incidence.

Performance of Membrane Electrode Assembly for DMFC Prepared by Bar-Coating Method (Bar-Coating 방법으로 제조한 직접메탄올 연료전지 MEA의 성능)

  • Kang, Se-Goo;Park, Young-Chul;Kim, Sang-Kyung;Lim, Seong-Yop;Jung, Doo-Hwan;Jang, Jae-Hyuk;Peck, Dong-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 2008
  • The key component of a direct methanol fuel cell (DMFC) is the membrane electrode assembly (MEA), which comprises a polymer electrolyte membrane and catalyst layers (anode and cathode electrode). Generally the catalyst layer is coated on the porous electrode supporter (e.g. carbon paper or cloth) using various coating methods such as brushing, decal transfer, spray coating and screen printing methods. However, these methods were disadvantageous in terms of the uniformity of catalyst layer thickness, catalyst loss, and coating time. In this work, we used bar-coating method which can prepare the catalyst layer with uniform thickness for MEA of DMFC. The surface and cross-section morphologies of the catalyst layers were observed by SEM. The performances and resistance of the MEAs were investigated through a single cell evaluation and impedance analyzer.

Characteristics of Silver Metal-mesh Electrodes Coated by Carbon Nanotubes (탄소 나노튜브가 코팅된 은 메탈-메쉬 전극의 특성)

  • Kim, Bu-Jong;Park, Jong-Seol;Hwang, Young-Jin;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.1
    • /
    • pp.55-59
    • /
    • 2015
  • This study demonstrates hybrid-type transparent electrodes for touch screen panels. The hybrid-type electrodes were fabricated by coating carbon nanotubes (CNTs) on metal meshes. To form the metal-meshes, thin films of silver (Ag) were deposited on glass substrates using the sputtering method and then patterned via photolithography to obtain mesh structures whose line width was $10{\mu}m$ and line-to-line spacing was $300{\mu}m$. CNTs were coated on Ag-meshes by using two different methods, such as spray coating and electrophoretic deposition (EPD). For the samples of a Ag-meshes and CNTs-coated Ag-meshes, their surface morphologies, electrical sheet resistances, and visible-range transmittances and reflectances were characterized and compared. The experimental results indicated that the reflectance of Ag-mesh electrodes was substantially reduced by coating of CNTs. Especially, the hybrid electrodes of Ag-meshes with EPD-coated CNTs showed excellent properties such as sheet resistance lower than $20{\Omega}/{\Box}$, transmittance higher than 90 %, and reflectance lower than 8%.

Characterization of Transparent Electrodes using Carbon Nanotubes Coated by Conductive Polymers (전도성 고분자가 코팅된 탄소 나노튜브 투명전극의 특성 분석)

  • Kim, Bu-Jong;Han, Sang-Hoon;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 2014
  • This study demonstrates transparent electrodes with characteristics desirable for touch screen panels using carbon nanotubes (CNTs). This has been accomplished by depositing CNTs on glass substrates via spray coating and then depositing thin conductive polymer films on the CNTs via spin coating. For all of the samples, such as CNTs, conductive polymers, and polymer-coated CNTs, the surface morphologies, sheet resistances, visible transmittances, chromatic properties are characterized as functions of their preparation conditions, such as the spray times for CNTs and the spin speeds for conductive polymers. The experimental results confirm that only the polymer-coated CNTs can satisfy all of the requirements that are required for electrodes of touch screen panels, such as the sheet resistance lower than $100{\Omega}/sq$, the visible transmittance higher than 80 %, and the yellowness smaller than 1.