• Title/Summary/Keyword: coating amount

Search Result 588, Processing Time 0.021 seconds

A Study on Carbonation Resistance of Concrete Using Surface-coated Lightweight Aggregates (표면코팅된 경량골재를 사용한 콘크리트의 탄산화 저항성에 관한 연구)

  • Eom, In-Hyeok;Jeong, Euy-Chang;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • The purpose of this study is to investigate the mechanical properties and carbonation resistance of concretes using lightweight aggregate coated surface finishing materials. To evaluate the mechanical properties and carbonation resistance of concrete, slump, air amount, air-dried unit volume weight, compressive strength, and carbonation depth are tested. In terms of the unit volume weight of concrete, air-dried unit volume weight of concrete using coating lightweight aggregate was measured as $1,739{\sim}1,806kg/m^3$. When using coating aggregate, compressive strength of concrete at 28 days was measured as much as 82.7~95.9% of the compressive strength using non-coating aggregate. It is found that compressive strength tends to decrease with coating lightweight aggregate. However, all concretes using coating lightweight aggregate except O-LWAC satisfied the criteria for 28-day compressive strength suggested in KS. The measurement of carbonation depth when the water-repellent agent was used found that carbonation depth was reduced by as much as 2.6~6.1%. On the other hand, when using polymer waterproof agent, carbonation depth was reduced by as much as 8.6~12.0%. Consequently, to improve carbonation resistance, polymer waterproof agent was more effective than water-repellent agent. In particular, epoxy showed the most outstanding performance.

Preparation and Coating of Artificial Pearl using Inorganic Pigment (무기안료를 이용한 인공진주 코팅 및 제조)

  • Shin, Cheol-Woo;Hyun, Mi-Ho;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.528-535
    • /
    • 2015
  • Humanity has tended pursuing beauty. Pearls has been loved by many people for thousands of years as a symbol of wealth and status. Today, Artificial pearl were made using organic pigment due to bright colors and easy coating process. But the new coating technique is required due to low durability, weather resistance and difficulty of luxurious luster expression. This study, nitrocellulose and urethane were used as binder and inorganic pigment were used to expression of colors. Experimental variable of artificial pearl with nitrocellulose and solvent ratio, urethane and curing agent ratio, the amount of pearl number of coating, drying temperature and time, and coating technology was developed. The coated artificial pearl was evaluated with color-difference meter, ultraviolet ray resistance, promotion weathering. Urethane was better than nitrocellulose when compared with weather resistance, acid-alkalinity resistance.

Simultaneous Treatment of Tar and Particles Using Oil Scrubber and Bag Filter in Biomass Gasification (오일 스크러버 및 집진장치를 통한 바이오매스 가스화 공정 발생 타르 및 입자 제거 연구)

  • Kim, Joon Yub;Jo, Young Min;Kim, Sang Bum
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.712-718
    • /
    • 2019
  • A combustible producer gas composed of H2, CO and CH4 could be obtained by the thermal-chemical conversion of biomass. However, a large amount of particulate matters including tar generated causes the mal-function of turbines and engines or the fouling of pipelines. In this study, a wet scrubber using the soybean oil and bag filter were installed, and the removal efficiency was investigated. Hydrate limestone and wood char base activated carbon were pre-coated on the filter medium to prevent clogging of open pores. The removal efficiencies by the bag filter were 86 and 80% for the hydrated limestone and activated carbon coating, respectively. Overall, the collection when using a series of oil scrubbers and bag filters were 88%, while 83% for the filter coating material.

Effect of Mixing Ratio of Amphoteric and Anionic Latices on Print Quality of Coated Papers (라텍스의 혼합비율이 도공지 품질에 미치는 영향)

  • 강태근;박규재;이용규
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.72-79
    • /
    • 1999
  • The binder plays important roles in determining the quality of pigment coating. In addition to its primary role of binding the pigment to the base paper, the binder performs several other important functions. The binder, also referred to as the adhesive, is the dominant in the aqueous phase of the formulation. Thus it plays a major role in determining viscosity, rheology, water release, and setting time for the coating. Latices based on styrene-butadiene dominate the market for synthetic paper coating binders. Consumption is high and is expected to increase further due to the present tendeyncy toward high-solids coating. The purpose of this study is understanding the impact of various parameters of latex(i.e. Tg, Particle size) affecting prontabilities and optical properties of the coated papers, as well as providing basic information on the use of amphoteric latex for improving print qualities of coated papers. Recently, amphoteric latices, Which are cationic at low pH's but turn anionic at high pH's have attracted interests of paper scientists and engineers. Therefore we investigated the effect of the Tg(glass transition temperature) and particle size of amphoteric latex on the coating qualities. We also studied the effect of mixing ratios (Amphoteric / Anionic)of latex on the coating qualities. Our results showed that Tg and particle size of amphoteric latex have to be controlled for optimizing coated paper qualities. The formulation consisting of 10 parts of amphoteric latex and 5 parts of anionic latex gave best results in ink receptivity, smoothness, air permeability, opacity and sheet gloss. If the results hold for the industrial paper coatings, the amount of expensive amphoteric latex can be reduced while achieving best available printing quality.

  • PDF

Evaluating long-term relaxation of high strength bolts considering coating on slip faying surface

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.703-718
    • /
    • 2014
  • The initial clamping forces of high strength bolts subjected to different faying surface conditions drop within 500 hours regardless of loading, any other external force or loosening of the nut. This study develops a mathematical model for relaxation confined to creep on a coated faying surface after initial clamping. The quantitative model for estimating relaxation was derived from a regression analysis for the relation between the creep strain of the coated surface and the elapsed time for 744 hours. This study establishes an expected model for estimating the relaxation of bolted joints with diverse coated surfaces. The candidate bolts are dacro-coated tension control bolts, ASTM A490 bolt, and plain tension control bolts. The test parameters were coating thickness, species of coating. As for 96, 128, 168, and $226{\mu}m$ thick inorganic zinc, when the coating thickness was increased, relaxation after the initial clamping rose to a much higher range from 10% to 18% due to creep of the coating. The amount of relaxation up to 7 days exceeded 85% of the entire relaxation. From this result, the equation for creep strain can be derived from a statistical regression analysis. Based on the acquired creep behavior, it is expected that the clamping force reflecting relaxation after the elapse of constant time can be calculated from the initial clamping force. The manufacturer's recommendation of inorganic zinc on faying surface as $75{\mu}m$, appears to be reasonable.

Surface Characterization of Poly(vinylidene fluoride) and Poly(methyl methacrylate) Blend Coatings Prepared by Dispersion Coating (분산코팅에 의해 형성된 Poly(vinylidene fluoride)와 Poly(methyl methacrylate) 블렌드 코팅층의 표면 특성)

  • Seok, Kwang Hee;Ha, Jong-Wook;Lee, Soo-Bok;Park, In Jun;Kim, Hyung Joong
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.177-183
    • /
    • 2013
  • Surface properties such as morphology, crystalline structure, and chemical composition of poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) blend coatings prepared by dispersion coating on poly(ethylene terephthalate) (PET) film have been investigated. It was observed that the surface properties were greatly influenced by the coating temperature and blend composition according to SEM, ATR-FTIR and XPS analysis. The typical surface morphology of ${\alpha}$-crystalline structure of PVDF could be observed when the coating temperature was lower than $120^{\circ}C$ or the amount of PVDF was higher than 80 wt% in the blend. Otherwise, the crystalline structure was changed from ${\alpha}$-crystal to ${\gamma}$-crystal or amorphous state. Based on the XPS analysis, the surface segregation of PVDF chains in the blend coating was confirmed.

Synthesis and Microstructure Analysis of NiO Catalysts Coated on the FeCrAl Metal Alloy Foam for Hydrogen Production (수소제조를 위한 다공성 FeCrAl 금속 합금 Foam의 NiO 촉매 담지 및 미세구조 분석)

  • Lee, Yu-Jin;An, Geon-Hyoung;Park, Man-Ho;Lee, Chang-Woo;Choi, Sang-Hyun;Jung, Ju-Yong;Jo, Sung-Jong;Lee, Kun-Jae;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.393-400
    • /
    • 2014
  • NiO catalysts were successfully coated onto FeCrAl metal alloy foam as a catalyst support via a dip-coating method. To demonstrate the optimum amount of NiO catalyst on the FeCrAl metal alloy foam, the molar concentration of the Ni precursor in a coating solution was controlled, with five different amounts of 0.4 M, 0.6 M, 0.8 M, 1.0 M, and 1.2 M for a dip-coating process. The structural, morphological, and chemical bonding properties of the NiO-catalyst-coated FeCrAl metal alloy foam samples were assessed by means of field-emission scanning electron microscopy(FESEM), scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS). In particular, when the FeCrAl metal alloy foam samples were coated using a coating solution with a 0.8 M Ni precursor, well-dispersed NiO catalysts on the FeCrAl metal alloy foam compared to the other samples were confirmed. Also, the XPS results exhibited the chemical bonding states of the NiO phases and the FeCrAl metal alloy foam. The results showed that a dip-coating method is one of best ways to coat well-dispersed NiO catalysts onto FeCrAl metal alloy foam.

Microstructure and Hardness of Titanium Aluminide/Carbide Composite Coatings Prepared by Reactive Spray Method (반응성 스프레이방법으로 제작한 티타늄 알루미나이드/탄화물 복합박막의 미세조직과 경도)

  • Han, Chang-Suk;Jin, Sung-Yooun
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.350-358
    • /
    • 2020
  • A variety of composite powders having different aluminum and carbon contents are prepared using various organic solvents having different amounts of carbon atoms in unit volume as ball milling agents for titanium and aluminum ball milling. The effects of substrate temperature and post-heat treatment on the texture and hardness of the coating are investigated by spraying with this reduced pressure plasma spray. The aluminum part of the composite powder evaporates during spraying, so that the film aluminum content is 30.9 mass%~37.4 mass% and the carbon content is 0.64 mass%~1.69 mass%. The main constituent phase of the coating formed on the water-cooled substrate is a non-planar α2 phase, obtained by supersaturated carbon regardless of the alloy composition. When these films are heat-treated at 1123 K, the main constituent phase becomes γ phase, and fine Ti2AlC precipitates to increase the film hardness. However, when heat treatment is performed at a higher temperature, the hardness is lowered. The main constitutional phase of the coating formed on the preheated substrate is an equilibrium gamma phase, and fine Ti2AlC precipitates. The hardness of this coating is much higher than the hardness of the coating in the sprayed state formed on the water-cooled substrate. When hot pressing is applied to the coating, the porosity decreases but hardness also decreases because Ti2AlC grows. The amount of Ti2AlC in the hot-pressed film is 4.9 vol% to 15.3 vol%, depending on the carbon content of the film.

A Facile Process for Surface Modification with Lithium Ion Conducting Material of Li2TiF6 for LiMn2O4 in Lithium Ion Batteries

  • Kim, Min-Kun;Kim, Jin;Yu, Seung-Ho;Mun, Junyoung;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.223-230
    • /
    • 2019
  • A facile method for surface coating with $Li_2TiF_6$ which has a high lithium-ion conductivity, on $LiMn_2O_4$ spinel cathode material for high performance lithium ion batteries. The surface coating is performed by using a co-precipitation method with $Li_2CO_3$ powder and $H_2TiF_6$ solution under room temperature and atmospheric pressure without special equipment. Total coating amount of $Li_2TiF_6$ is carefully controlled from 0 to 10 wt.% based on the active material of $LiMn_2O_4$. They are evaluated by a systematic combination of analyses comprising with XRD, SEM, TEM and ICP. It is found that the surface modification of $Li_2TiF_6$ is very beneficial to high cycle life and excellent rate capability by reducing surface failure and supporting lithium ions transportation on the surface. The best coating condition is found to have a high cycle life of $103mAh\;g^{-1}$ at the 100th cycle and a rate capability of $102.9mAh\;g^{-1}$ under 20 C. The detail electrochemical behaviors are investigated by AC impedance and galvanostatic charge and discharge test.

Visualization of Self-Healing Function of Protective Coating for Concrete (콘크리트 보호코팅재의 자기치유 기능의 시각화)

  • Kim, Dong-Min;Choi, Ju-Young;Jin, Seung-Won;Nam, Kyeong-Nam;Park, Hyeong-Joo;Chung, Chan-Moon
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.10
    • /
    • pp.87-93
    • /
    • 2019
  • Microcapsules were prepared by using a mixture of linseed oil and a small amount of fluorescent fluid as a core material. Self-healing protective coatings were prepared by applying coating formulations containing varying amounts of microcapsules on mortar surface. After scratch or crack was generated in the coating, when the damaged region was exposed to ultraviolet light (${\lambda}=365nm$), it was observed that fluorescence emission area increased with increasing microcapsule loading. In the cases of the self-healing coatings having 20wt% or more microcapsule loading, the damaged region was almost filled with the healing agent. In water sorptivity test, the self-healing coating having 20wt% or more microcapsule loading showed a healing efficiency of about 85%. The fluorescence emission from the damaged region was easily observed at a distance of 3 m. The self-healing protective coating is expected to be useful to confirm its self-healing function with the eye.