DOI QR코드

DOI QR Code

Surface Characterization of Poly(vinylidene fluoride) and Poly(methyl methacrylate) Blend Coatings Prepared by Dispersion Coating

분산코팅에 의해 형성된 Poly(vinylidene fluoride)와 Poly(methyl methacrylate) 블렌드 코팅층의 표면 특성

  • Seok, Kwang Hee (Interface Materials and Process Research Group, Korea Research Institute of Chemical Technology) ;
  • Ha, Jong-Wook (Interface Materials and Process Research Group, Korea Research Institute of Chemical Technology) ;
  • Lee, Soo-Bok (Interface Materials and Process Research Group, Korea Research Institute of Chemical Technology) ;
  • Park, In Jun (Interface Materials and Process Research Group, Korea Research Institute of Chemical Technology) ;
  • Kim, Hyung Joong (Division of Advanced Materials Engineering, Kongju National University)
  • 석광희 (한국화학연구원 그린화학공정연구본부 계면재료공정연구그룹) ;
  • 하종욱 (한국화학연구원 그린화학공정연구본부 계면재료공정연구그룹) ;
  • 이수복 (한국화학연구원 그린화학공정연구본부 계면재료공정연구그룹) ;
  • 박인준 (한국화학연구원 그린화학공정연구본부 계면재료공정연구그룹) ;
  • 김형중 (공주대학교 공과대학 신소재공학부)
  • Received : 2012.10.17
  • Accepted : 2012.12.04
  • Published : 2013.03.25

Abstract

Surface properties such as morphology, crystalline structure, and chemical composition of poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) blend coatings prepared by dispersion coating on poly(ethylene terephthalate) (PET) film have been investigated. It was observed that the surface properties were greatly influenced by the coating temperature and blend composition according to SEM, ATR-FTIR and XPS analysis. The typical surface morphology of ${\alpha}$-crystalline structure of PVDF could be observed when the coating temperature was lower than $120^{\circ}C$ or the amount of PVDF was higher than 80 wt% in the blend. Otherwise, the crystalline structure was changed from ${\alpha}$-crystal to ${\gamma}$-crystal or amorphous state. Based on the XPS analysis, the surface segregation of PVDF chains in the blend coating was confirmed.

본 연구에서는 poly(ethylene terephthalate)(PET) 필름을 기재로 하여 분산코팅에 의해 형성된 poly(vinylidene fluoride)(PVDF)와 poly(methyl methacrylate)(PMMA) 블렌드 코팅의 표면 특성을 관찰하였다. 분산코팅의 특성상 저온에서 형성된 블렌드 코팅은 PVDF 입자의 형태와 결정구조가 그대로 유지되었으나 $120^{\circ}C$ 이상의 코팅온도에서 형성된 코팅의 경우 블렌드에 포함되어 있는 PVDF의 양에 따라 다양한 표면 특성을 나타내었다. 블렌드 중 PVDF의 양이 80 wt% 이상인 경우 PVDF의 ${\alpha}$-결정구조에 의한 특성이 확실히 관찰되는 반면에 PMMA의 양이 증가하면 표면 형태와 결정구조의 변화가 변화하는 것을 관찰하였다. 또한 코팅층의 최외각 표면에 대한 XPS 분석결과는 분산코팅에서도 PVDF의 표면 이행성이 나타남을 보여준다.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. J. Scheirs, Modern Fluoropolymers: High Performance Polymers for Diverse Applications, J. Scheirs, Editor, John Wiley & Sons Ltd., Chichester, pp 1-70 (1997).
  2. D. A. Seiler, Modern Fluoropolymers: High Performance Polymers for Diverse Applications, J. Scheirs, Editor, John Wiley & Sons Ltd., Chichester, pp 487-506 (1997).
  3. H. S. Nalwa, Ferroelectric Polymers, Marcel Dekker, New York, 1995.
  4. A. Lovinger, Science, 220, 1115 (1983). https://doi.org/10.1126/science.220.4602.1115
  5. Q. M. Zhang, V. Bharti, and X. Zhao, Science, 280, 2101 (1998). https://doi.org/10.1126/science.280.5372.2101
  6. E. Benedetti, S. Catanorchi, A. D'Alessio, P. Vergamini, F. Ciardelli, and M. Pracella, Polym. Int., 45, 373 (1998). https://doi.org/10.1002/(SICI)1097-0126(199804)45:4<373::AID-PI948>3.0.CO;2-Z
  7. C. Huang and L. Zhang, J. Appl. polym. Sci., 92, 1 (2004). https://doi.org/10.1002/app.13564
  8. W. Ma, J. Zhang, X. Wang, and S. Wang, Appl. Surf. Sci., 253, 8377 (2007). https://doi.org/10.1016/j.apsusc.2007.04.001
  9. W. Fan and S. Zheng, J. Polym. Sci. Part B: Polym. Phys., 45, 2580 (2007). https://doi.org/10.1002/polb.21264
  10. W. Ma, J. Zhang, and X. Wang, Appl. Surf. Sci., 254, 2947 (2008). https://doi.org/10.1016/j.apsusc.2007.10.037
  11. Y. Li, Y. Iwakura, and H. Shimizu, Macromolecules, 41, 3396 (2008). https://doi.org/10.1021/ma800148x
  12. I. S. Elashmawi and N. A. Hakeem, Polym. Eng. Sci., 48, 895 (2008). https://doi.org/10.1002/pen.21032
  13. W. Ma, J. Zhang, S. Chen, and X. Wang, Appl. Surf. Sci., 254, 5635 (2008). https://doi.org/10.1016/j.apsusc.2008.03.012
  14. J. S. Lee, A. A. Prabu, and K. J. Kim, Macromolecules, 42, 5660 (2009). https://doi.org/10.1021/ma802512c
  15. S. M. Pawde and K. Deshmukh, J. Appl. Polym. Sci., 114, 2169 (2009). https://doi.org/10.1002/app.30641
  16. G. S. Kim, M. S. Kang, M. J. Choi, Y. K. Kwon, and K. H. Lee, Macromol. Res., 17, 757 (2009). https://doi.org/10.1007/BF03218611
  17. Y. Okabe, H. Murakami, N. Osaka, H. Saito, and T. Inoue, Polymer, 51, 1494 (2010). https://doi.org/10.1016/j.polymer.2010.01.055
  18. R. A. Iezzi, Modern Fluoropolymers: High Performance Polymers for Diverse Applications, J. Scheirs, Editor, John Wiley & Sons Ltd., Chichester, pp 271-299 (1997).
  19. R. Gregorio, J. Appl. Polym. Sci., 100, 3272 (2006). https://doi.org/10.1002/app.23137
  20. R. Gregorio and D. S. Borges, Polymer, 49, 4009 (2008). https://doi.org/10.1016/j.polymer.2008.07.010
  21. A. Sakimi and A. A. Yousefi, J. Polym. Sci. Part B: Polym. Phys., 42, 3487 (2004). https://doi.org/10.1002/polb.20223
  22. F. A. Landis and R. B. Moore, Macromolecules, 33, 6031 (2000). https://doi.org/10.1021/ma000636a
  23. W. A. Yee, M. Kotaki, Y. Liu, and X. Lu, Polymer, 48, 512 (2007). https://doi.org/10.1016/j.polymer.2006.11.036
  24. X. Li, S. Chen, K. Yao, and F. E. H. Tay, J. Polym. Sci. Part B: Polym. Phys., 47, 2410 (2009). https://doi.org/10.1002/polb.21837
  25. G. Zhong, L. Zhang, R. Su, K. Wang, H. Fong, and L. Zhu, Polymer, 52, 2228 (2011). https://doi.org/10.1016/j.polymer.2011.03.024
  26. S. Ramasundaram, S. Yoon, K. J. Kim, and J. S. Lee, Macromol. Chem. Phys., 209, 2516 (2008). https://doi.org/10.1002/macp.200800501
  27. M. Benz and W. B. Euler, J. Appl. Polym. Sci., 89, 1093 (2003). https://doi.org/10.1002/app.12267
  28. S. Mohamadi and N. Sharifi-Sanjani, Polym. Compos., 32, 1451 (2011). https://doi.org/10.1002/pc.21175
  29. V. Causin, M. L. Carraro, C. Marega, R. Saini, S. Campestrini, and A. Marigo, J. Appl. Polym. Sci., 109, 2354 (2008). https://doi.org/10.1002/app.28308
  30. R. Gregorio and R. C. Capitao, J. Mater. Sci., 35, 299 (2000). https://doi.org/10.1023/A:1004737000016
  31. W. M. Prest and D. J. Luca, J. Appl. Phys., 49, 5042 (1978). https://doi.org/10.1063/1.324439
  32. G. K. Narula and P. K. C. Pillai, J. Mater. Sci. Lett., 9, 130 (1990). https://doi.org/10.1007/BF00727693
  33. T.-W. Son, J.-H. Kim, W.-M. Choi, F.-F- Han, and O.-K. Kwon, Polymer(Korea), 35, 130 (2011).
  34. D. M. Brewis and I. Mathieson, Modern Fluoropolymers: High Performance Polymers for Diverse Applications, J. Scheirs, Editor, John Wiley & Sons Ltd., Chichester, pp 487-506 (1997).