• Title/Summary/Keyword: coated fabric

Search Result 132, Processing Time 0.027 seconds

Effects of Wearing Bio-active Material Coated Fabric against γ-irradiation-induced Cellular Damage in Sprague-Dawley Rats

  • Kang, Jung Ae;Kim, Hye Rim;Yoon, Sunhye;Nam, You Ree;Park, Sang Hyun;Go, Kyung-Chan;Yang, Gwang-Wung;Rho, Young-Hwan;Park, Hyo-Suk;Jang, Beom Su
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.206-210
    • /
    • 2016
  • Background: Ionizing radiation causes cellular damage and death through the direct damage and/or indirectly the production of ROS, which induces oxidative stress. This study was designed to evaluate the in vivo radioprotective effects of a bio-active material coated fabric (BMCF) against ${\gamma}$-irradiation-induced cellular damage in Sprague-Dawley (SD) rats. Materials and Methods: Healthy male SD rats wore bio-active material coated (concentrations in 10% and 30%) fabric for 7 days after 3 Gy of ${\gamma}$-irradiation. Radioprotective effects were evaluated by performing various biochemical assays including spleen and thymus index, WBC count, hepatic damage marker enzymes [aspartate transaminase (AST) and alanine transaminase (ALT)] in plasma, liver antioxidant enzymes, and mitochondrial activity in muscle. Results and Discussions: Exposure to ${\gamma}$-irradiation resulted in hepatocellular and immune systemic damage. Gamma-irradiation induced decreases in antioxidant enzymes. However, wearing the BMCF-30% decreased significantly AST and ALT activities in plasma. Furthermore, wearing the BMCF-30% increased SOD (superoxide dismutase) and mitochondrial activity. Conclusion: These results suggest that wearing BMCF offers effective radioprotection against ${\gamma}$-irradiation-induced cellular damage in SD rats.

The Effect of Manufacturing Conditions of Coated Yarn Using Anti-Static Thermoplastic Polyurethane M/B on Anti-Static Resistance (대전방지 열가소성폴리우레탄 M/B를 이용한 코팅사 제조 조건이 대전방지성에 미치는 영향)

  • Yedam Jeong;Jieun Kwon;Sunmin Kwon;Seehyeon Chae;Hyunjea Cho;Wooseok Kim;Mikyung Kim;Jongwon Kim
    • Textile Coloration and Finishing
    • /
    • v.35 no.1
    • /
    • pp.20-28
    • /
    • 2023
  • In this study, TPU resin for coating was prepared by varying the mixing ratio of antistatic TPU and recycled TPU to manufacture permanent antistatic materials. The coated yarn was prepared by coating on the nylon yarn, and then the thermal, rheological, mechanical properties and antistatic properties were analyzed. In addition, antistatic properties and durability were confirmed after manufacturing UD fabrics using coated yarns. The mixing ratio of antistatic TPU and recycled TPU was most appropriate at 4:6, and the antistatic property had a surface resistance of 2.20 × 109 Ω and a static charge of 398 V. In the coating process, the coating speed was most appropriate at 0.21 m/s, and the surface resistance of the UD fabric manufactured with the coated yarn manufactured under this condition was 6.80 × 109 Ω and the static charge was 484 V. The UD fabric had a surface resistance of 7.21 × 109 Ω and a static charge of 517 V after washing 10 times, and it was confirmed that the permanent antistatic property was excellent.

Fiber network with superhydrophilic Si-DLC coating

  • Kim, Seong-Jin;Mun, Myeong-Un;Lee, Gwang-Ryeol;Kim, Ho-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.363-363
    • /
    • 2010
  • The high capillarity of a plastic fiber network having superhydrophilic Si-DLC coating is studied. Although the superhydrophilic surface maximize wetting ability on the flat surface, there remains a requirement for the more wettable surface for various applications such as air-filters or liquid-filters. In this research, the PET non-woven fabric surface was realized by superhydrophilic coating. PTE non-woven fabric network was chosen due to its micro-pore structure, cheap price, and productivity. Superhydrophobic fiber network was prepared with a coating of oxgyen plasma treated Si-DLC films using plasma-enhanced chemical vapor deposition (PECVD). We first fabricated superhydrophilic fabric structure by using a polyethylene terephthalate (PET) non-woven fabric (NWF) coated with a nanostructured films of the Si-incorporated diamond-like carbon (Si-DLC) followed by the plasma dry etching with oxygen. The Si-DLC with oxygen plasma etching becomes a superhydrophilic and the Si-DLC coating have several advantages of easy coating procedure at room temperature, strong mechanical performance, and long-lasting property in superhydrophilicity. It was found that the superhydrophobic fiber network shows better wicking ability through micro-pores and enables water to have much faster spreading speed than merely superhydrophilic surface. Here, capillarity on superhydrophilic fabric structure is investigated from the spreading pattern of water flowing on the vertical surface in a gravitational field. As water flows on vertical flat solid surface always fall down in gravitational direction (i.e. gravity dominant flow), while water flows on vertical superhydrophilic fabric surface showed the capillary dominant spreading.

  • PDF

Moisture and Heat Transfer Characteristics of Waterproof and Water Vapor Permeable Coated Fabrics (기능성 투습방수 코팅포의 수분 및 열전달 특성)

  • Cho, Ji-Hyun;Ryu, Duck-Hwan
    • Korean Journal of Human Ecology
    • /
    • v.8 no.1
    • /
    • pp.151-163
    • /
    • 1999
  • The purpose of this study was to investigate the thermal resistance and the liquid/vapor water transfer characteristics of four waterproof and water vapor permeable coated fabrics with the ground fabric called nylon taffeta. In order to establish the experimental environment, outdoor temperature and humidity in Taegu during the last three years were examined and the experiment was performed at (1) $15^{\circ}C$, 50% R.H., (2) $20^{\circ}C$, 60% R.H., (3) $25^{\circ}C$, 65% R.H., which were the average standards in spring and fall. The test results were as follows ; 1. Among physical parameters, the thinner the thickness was, the higher the water vapor permeability was. But the porosity in thickness was not proportional to water vapor permeability linearly. 2. The thicker the thickness of specimens was and the smaller the bulk density and porosity were, the higher the thermal resistance. And the results also shown that the larger the temperature difference between the environmental temperature and the hot plate was, the more the difference of CLO values was apparent. 3. Since the contact angle of all specimens are above $90^{\circ}$, the all specimens have a good performance in waterproof. The more the specimens surface were rough, the higher the thermal resistance was. 4. According to the result of performing moisture transfer test using the simulating body skin-clothing-environment system, the humidity sensor placed in between the fabric and the environment detected the full saturation in 10 minutes after the experiment had began at $15^{\circ}C$, 50% R.H. and in 15 minutes after the experiment both at $20^{\circ}C$, 60% R.H. and at $25^{\circ}C$, 65% R.H. 5. ${\Delta}$ values of the humidity sensors placed in between the human body and the fabric and in between the fabric and the environment fluctuated repeatedly within the range of $20{\sim}40%$ at $20^{\circ}C$, 60% R.H., and $15{\sim}30%$ at $25^{\circ}C$, 65% R.H.

  • PDF

Energy Harvesting System according to Moisture Absorption of Textile and Efficient Coating Method as a Carbon Black (섬유 고분자의 수분 흡수에 따른 에너지 하베스팅 발전 소자 및 이를 위한 카본 블랙의 효율적인 코팅법)

  • Choi, Seungjin;Chae, Juwon;Lee, Sangoh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.280-287
    • /
    • 2021
  • Generating electricity by using water in many energy harvesting system is due to their simplicity, sustainability and eco-friendliness. Evaporation-driven moist-electric generators (EMEGs) are an emergent technology and show great potential for harvesting clean energy. In this study, we report a transpiration driven electro kinetic power generator (TEPG) that utilize capillary flow of water in an asymmetrically wetted cotton fabric coated with carbon black. When water droplets encounter this textile EMEG, the water flows spontaneously under capillary action without requiring an external power supply. First carbon black sonicated and dispersed well in three different solvent system such as dimethylformamide (DMF), sodiumdedecylbenzenesulfonate (SDBS-anionic surfactant) and cetyltrimethylammoniumbromide (CTAB-cationic surfactant). A knitted cotton/PET fabric was coated with carbon black by conventional pad method. Cotton/PET fabrics were immersed and stuttered well in these three different systems and then transferred to an autoclave at 120 ℃ for 15 minutes. Cotton/PET fabric treated with carbon black dispersed in DMF solvent generated maximum current up to 5 µA on a small piece of sample (2 µL/min of water can induce constant electric output for more than 286 hours). This study is high value for designing of electric generator to harvest clean energy constantly.

Mechanical Properties and Surface Morphology of Cotton Fabrics Dyed with Persimmon Juice (감즙 염색에 의한 면직물의 역학적 특성과 표면형태)

  • Huh, Man-Woo
    • Textile Coloration and Finishing
    • /
    • v.24 no.4
    • /
    • pp.296-304
    • /
    • 2012
  • For development of dyeability, the cotton fabric was dyed repeatedly with persimmon juice by padding mangle. We evaluated the mechanical properties and hand value by Kawabata Evaluation System, and observed the change of surface morphology. The results obtained from this study were as follows. With the increase of repeating padding times of dyeing, the linearity of load-extension curve and tensile energy per unit length of the cotton fabric were increased, but the tensile resilience of fabric was decreased. The value of shear stiffness and shear hysteresis were increased. Also compression resilience and linearity of compression thickness curve were increased. The cotton fabric dyed with persimmon juice had shown the thickness and weight increase as the number of padding increase. As repeating times of dyeing with persimmon juice were increased, among the 6 hand values, the item of stiffness, anti-drape stiffness, fullness and softness were increased, while flexibility with soft feeling and crispness were greatly decreased. The amount of coated persimmon juice on the surface of the fabric was gradually increased as the padding times of dyeing. And cotton fabrics were dyed evenly with persimmon juice by padding mangle.

Study on the TiO2-Ag Nanoparticle Coated PET Fabric with an Atomizer (아토마이저를 이용한 PET 직물의 TiO2-Ag 나노입자 코팅 연구)

  • Lee, Hyun Woo;Hong, Tae Min;Son, Han-Geul;Lim, Sung Chan;Shin, Weon Gyu;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.26 no.2
    • /
    • pp.99-105
    • /
    • 2014
  • In this study, $TiO_2$ and Ag powders were deposited on the PET fabric using an atomizer in order to study the characteristics of particle deposited fabric. To improve the particle deposition, the surface of the fabric was pre-treated with an electron beam and its effect was studied with the deposition of those elements on the fabric. The SEM was used to observe the morphology of the deposition fabric and through the EDS analysis, the deposition of $TiO_2$ and Ag was confirmed. Also, the absorbance of the particle deposited fabric was measured using the Methylene Blue to verify the photolysis nature of $TiO_2$. Moreover, the antibiotic nature of Ag on the surface of the PET fabric was identified through the antibiosis test.

Properties of Rubbers and Coated Fabrics according to Different Cross-linking Density of Coating Agent (코팅제의 가교 밀도에 따른 고무와 코팅원단의 물성 변화)

  • Suhong Kim;Kisuk Sung;Doohyun Baik
    • Textile Coloration and Finishing
    • /
    • v.35 no.1
    • /
    • pp.8-19
    • /
    • 2023
  • Silicone rubber is widely used in most industries due to diverse advantages like heat stability, UV stability, durability, chemical resistance, environment friendliness, inertness and so on. But there is limitation to expand applications due to relatively weak rubber strengths such as tensile strength and tear strength, especially in fabric coating applications. The purpose of this study is to find influence of coating agent on performances of rubber and coated fabrics and their correlation according to different crosslinking densities of silicone rubbers. Addition cure type of silicones were formulated using crosslinked MQ-type silicone resin consisting of M (R3SiO1/2) and Q (SiO4/2) and linear polymers. Raw materials used were; 1) linear vinyl endblocked polymers and vinyl functional MQ resin as main polymers, 2) linear silicone hydride polymers as crosslinkers, 3) platinum catalyst and 4) inhibitor to control curing speed. Rubber specimens were prepared to check mechanical strength using universal testing machine (UTM). Crosslinking density was calculated using Flory-Rhener equation using solvent swelling method. Differential scanning calorimetry (DSC) and scanning electron microscope (SEM-EDS) were used to characterize rubbers. Consequently, it was found that physical properties of silicone rubbers and coated fabrics can be expected by crosslinking density of rubbers. Silicone rubber formulations that contain 20 ~ 30 wt% of vinyl MQ resin showed strongest balanced performances.

Surface Property of PET Fabric Treated with $CF_4$ Plasma and $C_2F_6$ Plasma (플루오르 화합물을 플라즈마 처리한 PET 직물의 표면특성)

  • 김태년;모상영
    • Textile Coloration and Finishing
    • /
    • v.11 no.1
    • /
    • pp.25-33
    • /
    • 1999
  • PET fabric was grafted with $CF_4$ or $C_2F_6$ plasmas generated by glow discharge. The water repellency of plasma-treated fabrics were evaluated with contact angle meter. The change in surface morphologies was observed by SEM, and the change of surface chemical characteristics were analyzed by FT-IR, ESCA and microchemical analysis technique. The results obtained are as follows : 1) The contact angle of plasma-treated fabric was over $150^\circ{C}$. 2) It was observed by SEM that the surface of treated substrate was over coated with thin film formed by the fluorocarbon plasma treatment. 3) According to ESCA analysis, there were prevailing -CHF-, $-CF_2$- and a little $-CF_3$ components on fluorocarbon plasma treated substrate. -CHF- and $-CF_2$- components were reduced by washing, and $-CF_2$- component was recovered by heat treatment. 4) In consideration of quantitative analysis of fluorine and F/C ratio by ESCA, we found that fluorination reached to the inner of substrate.

  • PDF

Effects of Sewing Conditions for Knitted Fabric on the Heat Generation of Sewing Needle (재봉바늘의 열발생에 미치는 편성물봉제조건의 영향)

  • 이춘규
    • Journal of the Korean Home Economics Association
    • /
    • v.24 no.3
    • /
    • pp.59-67
    • /
    • 1986
  • The heat of sewing needle is generated through the friction during the needle penetration into and withdrawal from fabrics. Therefore, effects of sewing condition for knitted fabric on the heat generation of needle was examined. The needle size was not the large influence factor of heat generation of needle but the needle point shape significantly affects needle temperature. And the super needle coated with fluoro resin had more effect on reducing the heat of needle. The decrease of sewing speed and the increase of stitch rate had more effect on the reduction in needle temperature. Also the Influence of a sewing thread on the needle temperature was very large compared with bare needle. As expected, an increase in the number of fabric layers result in higher needle temperature.

  • PDF