• Title/Summary/Keyword: coat protein pIII

Search Result 6, Processing Time 0.02 seconds

Minor Coat Protein pIII Domain (N1N2) of Bacteriophage CTXф Confers a Novel Surface Plasmon Resonance Biosensor for Rapid Detection of Vibrio cholerae

  • Shin, Hae Ja;Hyeon, Seok Hywan;Cho, Jae Ho;Lim, Woon Ki
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.510-518
    • /
    • 2021
  • Bacteriophages are considered excellent sensing elements for platforms detecting bacteria. However, their lytic cycle has restricted their efficacy. Here, we used the minor coat protein pIII domain (N1N2) of phage CTXφ to construct a novel surface plasmon resonance (SPR) biosensor that could detect Vibrio cholerae. N1N2 harboring the domains required for phage adsorption and entry was obtained from Escherichia coli using recombinant protein expression and purification. SDS-PAGE revealed an approximate size of 30 kDa for N1N2. Dot blot and transmission electron microscopy analyses revealed that the protein bound to the host V. cholerae but not to non-host E. coli K-12 cells. Next, we used amine-coupling to develop a novel recombinant N1N2 (rN1N2)-functionalized SPR biosensor by immobilizing rN1N2 proteins on gold substrates and using SPR to monitor the binding kinetics of the proteins with target bacteria. We observed rapid detection of V. cholerae in the range of approximately 103 to 109 CFU/ml but not of E. coli at any tested concentration, thereby confirming that the biosensor exhibited differential recognition and binding. The results indicate that the novel biosensor can rapidly monitor a target pathogenic microorganism in the environment and is very useful for monitoring food safety and facilitating early disease prevention.

Characterization of a Phage Library Displaying Random 22mer Peptides

  • Lee, Seung-Joo;Lee, Jeong-Hwan;Kay, Brian K.;Dreyfuss, Gideon;Park, Yong-Keun;Kim, Jeong-Kook
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.347-353
    • /
    • 1997
  • We have characterized a phage library displaying random 22mer peptides which were produced as N-terminal fusions to the pIII coat protein of M13 filamentous phages. Among the sixty phages randomly picked from the library, 25 phages had the 22mer peptide inserts. The DNA sequence analysis of the 25 inserts showed the following results: first, each nucleotide was represented almost equally at each codon position except that there were some biases toward G bases at the first position of the codons. Secondly, the expected 47 sense codons were represented. The deduced amino acid sequences of the 25 inserts were analyzed to examine its diversity. Glycine and glutamate were the two most overrepresented residues above the expected value, whereas cysteine and threonine residues were underrepresented. The range of dicersity in dipeptide sequences showed that the amino acid residues were randomly distributed along the peptide insert. Acidic, basic, polar, and nonpolar amino acid residues were represented to the extent expected at most positions of the peptide inserts. The predicted isoelectric points and hydropathy indices of the 25 peptides showed that a variety of the peptide were represented in the library. These results indicate that this phage display library could be useful in fiuding ligands for a broad spectrum of receptors by affinity screening.

  • PDF

Characterization of Peanut stunt virus Isolated from Black Locust Tree (Robinia pseudo-acacia L.)

  • Bang, Ju-Hee;Choi, Jang-Kyung;Lee, Sang-Yong
    • The Plant Pathology Journal
    • /
    • v.22 no.2
    • /
    • pp.125-130
    • /
    • 2006
  • An isolate of Peanut stunt virus (PSV) isolated from black locust tree (Robinia pseudo-acacia L.) showing severe mosaic and malformation symptoms, was designated as PSV-Rp. PSV-Rp was characterized by the tests of host range, physical properties, RNA and coat protein composition and RT-PCR analysis. Nucleotide sequences of the cucumoviruses CP genes were also used for identification and differentiation of PSV-Rp. Six plant species were used in the host range test of PSV-Rp. PSV-Rp could be differentiated from each Cucumovirus strain used as a control by symptoms of the plants. The physical properties of PSV-Rp virus were TIP $65^{\circ}C$, DEP $10^{-3}$, and LIP $2{\sim}3$ days. In dsRNA analysis, PSV-Rp consisted of four dsRNAs, but satellite RNA was not detected. Analysis of the coat proteins by SDS-PAGE showed one major protein band of about 31 kDa. RT-PCR using a part of Cucumovirus RNA3 specific primer amplified ${\sim}950bp$ DNA fragments from the crude sap of virus-infected black locust leaves. RFLP analysis of the RT-PCR product could differential PSV-RP from CMV The nucleotide sequence identity between the PSV-Rp CP and the TAV-P CP genes and the PS-V-RP CP and CMV-Y CP genes were 61.6% and 40.5%, respectively. On the other hand, the nucleotide sequence identity of the PSV-Rp CP gene was $70.9%{\sim}73.4%$ in comparison with those of PSV subgroup I (PSV-ER and PSV-J) and 67.3% with that of PSV subgroup II(PSV-W). Especially, the nucleotide sequence identity of PSV-Rp CP gene and that of PSV-Mi that was proposed recently as the type member of a novel PSV subgroup III was 92.4%.

Construction of Complementary DNA Library and cDNA Cloning for Cy Strain of Odontoglossum Ringspot Virus Genomic RNA (오돈토글로썸 윤문 바이러스 Cy계통 게놈 RNA의 cDNA 구축 및 유전자 크로닝)

  • 류기현;박원목
    • Korean Journal Plant Pathology
    • /
    • v.10 no.3
    • /
    • pp.228-234
    • /
    • 1994
  • Genomic RNA was extracted from Cy strain of odontoglossum ringspot tobamovirus (ORSV-Cy) isolated from infected leaves of tobacco cv. Samsun. Size of the genomic RNA was about 6.6 kb in length. The genomic RNA was fractionated using Sephadex G-50 column chromatography into 2 fractions. They were polyadenylated at their 3'-end using E. coli poly(A) polymerase. Polyadenylated viral RNA was recovered by oligo (dT) primer adapter containing NotI restriction site and Moloney murine leukemia virus SuperScript reverse transcriptase (RNase H-). Second-strand cDNA was synthesized by using E. coli DNA ligase, E. coli DNA polymerase I and E. coli RNase H. Recombinant plasmids containing cDNAs for ORSV-Cy RNA ranged from about 800 bp to 3,000 bp. Among the selected 238 recombinants, pORCY-124 clone was the largest one covering 3'-terminal half of the viral RNA. This clone contained two restriction sites for EcoRI and XbaI and one site for AccI, AvaI, BglII, BstXI, HindIII, PstI, and TthIII 1. respectively. The clone contained partial viral replicase, a full-length movement protein and a complete coat protein genes followed by a 3' untranslated region of 414 nucleotides based on restriction mapping and nucleotide sequencing analyses. Clones pORCY-028, -068, -072, -187 and -224 were overlapped with the pORCY-124. Clones pORCY-014 and -095 covered 5' half upstream from the middle region of the viral RNA, which was estimated based on restriction mapping and partial sequence analysis. Constructed cDNA library covered more than 90% of the viral genome.

  • PDF

Etiological Properties and Coat Protein Gen Analysis of Potato Virus Y Occuring in Potatoes of Korea (우리나라 감자에 발생하는 PVY의 병원학적 특성 및 외피단백질 유전자 분석)

  • ;Richard M. Bostock
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1995.06b
    • /
    • pp.77-96
    • /
    • 1995
  • To obtain basic informations for the improvement of seed potato production in Korea, some etiological properties of potato virus Y(PVY) distributed in the major seed potato production area(Daekwanryeong) were characterized, and the nucleotide and amino acid sequences of the coat protein gene of the PVY strains isolated were analyzed. PVY strains in Daekwonryeong, an alpine area, were identified to be two strains, PVYo and PVYN by symptoms of indicator plants, and their distribution in potato fields was similar. Major symptom on potato varieties by PVY was grouped as either mosaic alone or mosaic accompanied with veinal necrosis in the lower leaves. The symptom occurrence of the two symptoms was similar with Irish Cobbler, but Superior showed a higher rate of mosaic symptom than the other. The PVY strain which was isolated from potato cv. Superior showing typical mosaic symptoms produced symptoms of PVY-O on the indicator plants of Chenopodium amaranticolor, Nicotiana tabacum cv. Xanthi nc and Physalis floridana, but no symptom o Capsicum annum cv. Ace. Moreover, results from the enzyme-linked immunosorbent assay with monoclonal and polyclonal antibodies showed that the isolated PVY reacts strongly with PYV-O antibodies but does not react specifically with PVY-T antibodies. The purified virus particles were flexious with a size of 730$\times$11nm. On the basis of the above characteristics, the strain was identified to be a PVY-O and named as of PVY-K strain. The flight of vector aphids was observed in late May, however, the first occurrence of infected plants was in mid June with the bait plants surrounded with PVY-infected potato plants and early July with the bait plants surrounded with PVY-free potato plants. PVY infection rates by counting symptoms on bait plants (White Burley) were 1.1% with the field surrounded with PVY-free potato plants and 13.7% the fields surrounded with PVY-infected potato plants, showing the effect of infection pressure. The propagated PVY-K strain on tobacco(N. sylvestris) was purified, and the RNA of the virus was extracted by the method of phenol extraction. The size of PVY-K RNA was measured to be 9, 500 nucleotides on agarose gel electrophoresis. The double-stranded cDNAs of PVY-K coat protein(CP) gene derived by the method of polymerase chain reaction were transformed into the competent cells of E. coli JM 109, and 2 clones(pYK6 and pYK17) among 11 clones were confirmed to contain the full-length cDNA. Purified plasmids from pYK17 were cut with Sph I and Xba I were deleted with exonuclease III and were used for sequencing analysis. The PVY-K CP gene was comprised of 801 nucleotides when counted from the clevage site of CAG(Gln)-GCA(Ala) to the stop codon of TGA and encoded 267 amino acids. The molecular weight of the encoded polypeptides was calculated to be 34, 630 daltons. The base composition of the CP gene was 33.3% of adenine, 25.2% of guanine, 20.1% of cytosine and 21.4% of uracil. The polypeptide encoded by PVY-K CP gene was comprised of 22 alanines, 20 threonines, 19 glutamic acids and 18 glycines in order. The homology of nucleotide sequence of PVY-K CP gene with those of PVY-O(Japan), PVY-T(Japan), PVY-TH(Japan), PVYN(the Netherlands), and PVYN(France) was represented as 97.3%, 88.9%, 89.3%, 89.6% and 98.5%, respectively. The amino acid sequence homology of the polypeptide encoded by PVY-K CP gene with those encoded by viruses was represented as 97.4%, 92.5%, 92.9%, 92.9%, and 98.5%, respectively.

  • PDF

Molecular Miology of the Poliovirus (폴리오바이러스의 분자생물학)

  • 최원상
    • Journal of Life Science
    • /
    • v.7 no.4
    • /
    • pp.392-401
    • /
    • 1997
  • The poliovirus is a small, and non-enveloped virus. The RNA genome of poliovirus is continuous, linear, and has a single open reading frame. This polyprotein precursor is cleaved proteolytically to yield mature products. Most of the cleavages occur by viral protease. The mature proteins derived from the P1 polyprotein precursor are the structural components of the viral capsid. The initial cleavage by 2A protease is indirectly involved in the cleavage of a cellular protein p220, a subunit of the eukaryotic translation initiation factor 4F. This cleavage leads to the shut-off of cap-dependent host cell translation, and allows poliovirus to utilize the host cell machinery exclusively for translation its own RNA, which is initiated by internal ribosome entry via a cap-independent mechanism. The functional role of the 2B, 2C and 2BC proteins are not much known. 2B, 2C, 2BC and 3CD proteins are involved in the replication complex of virus induced vesicles. All newly synthesized viral RNAs are linked with VPg. VPg is a 22 amino acid polypeptide which is derived from 3AB. The 3C and 3CD are protease and process most of the cleavage sites of the polyprotein precursor. The 3C protein is also involved in inhibition of RNA polymerase II and III mediated transcription by converting host transcription factor to an inactive form. The 3D is the RNA dependent RNA polymerase. It is known that poliovirus replication follows the general pattern of positive strand RNA virus. Plus strand RNA is transcribed into complementary minus strand RNA that, in turn, is transcribed for the synthesis of plus strand RNA is transcribed into complementary minus strand RNA that, in turn, is transcribed for the synthesis of plus strand RNA strands. Poliovirus RNA synthesis occurs in a membranous environment but how the template RNA and proteins required for RNA replication assemble in the membrane is not much known. The RNA requirements for the encapsidation of the poliovirus genome (packaging signal) are totally unknown. The poliovirus infection cycle lasts approximately 6 hours.

  • PDF