• Title/Summary/Keyword: coat protein gene

Search Result 189, Processing Time 0.019 seconds

Analysis and Detection of Coast Protein Gene of Barley Yellow Mosaic Virus and Barley Mield Mosaic Virus by RT-PCR (RP-PCR을 이용한 보리누른모자이크바이러스 (BaYMV)와 보리마일드모자이크바이러스(BaMMV)의 외피단백질 유전자 검정 및 해석)

  • 이귀재
    • Korean Journal Plant Pathology
    • /
    • v.14 no.4
    • /
    • pp.314-318
    • /
    • 1998
  • Using the reverse transcription polymerase chain reaction (RT-PCR), a rapid and sensitive assay method for the detection and identification of barley yellow mosaic virus (BaYMV) and barley mild mosaic virus (BaMMV) was adapted. Two units of primers from each virus were selected and used for the determination of two different viruses. PCR fragments of BaYMV (ca. 0.9kb) and BaMMV (ca. 0.8kb) were obtained from the designed method for the assay of BaYMV and BaMMV coat protein. PT-PCR fragments were cloned using vector pT7 Blue and the sequences of the selected clones were analyzed. coat protein of BaYMV and that of BaMMV consisted of 297 amino acids (891 nucleotides) and 251 amino acids (753 nucleotides), respectively. The snalysis of coat protein genes from these two viruses showed that 45.6% of nucleotides sequence ad 34.9% of amino acid in BaYMV were homologous to those in BaMMV.

  • PDF

Effect of Timing of IPTG Addition on Expression of Turnip Mosaic Virus Coat Protein Gene in Escherichia Coli (IPTG의 첨가 시간이 대장균(Escherichia coli)에서 순무 모자이크 바이러스(TuMV)의 외피단백질 발현에 미치는 영향)

  • Kim, Su-Joong;Park, Won-Mok;Ryu, Ki-Hyun;Lee, Sang-Seon;Lee, Se-Yong
    • Korean Journal Plant Pathology
    • /
    • v.13 no.4
    • /
    • pp.248-254
    • /
    • 1997
  • Expression vector (pGEX-Tu) for the coat protein (CP) gene of turnip mosaic virus Ca strain (TuMV-Ca) was constructed by incorporation of TuMV CP gene into pGEX-KG vector which had ${\beta}$-galactosidase gene and IPTG (isopropylthio-${\beta}$-D-galactoside) induction site. The results of ELISA and western hybridization indicated that optimal condition of the expression were when IPTG and western hybridization indicated that optimal condition of the expression were when IPTG induction was carried out on YTA medium with ampicillin in 2 hours after the E. coli seed inoculation ($A_{595}$=0.1/ml). TuMV CP gene was expressed with GST (Glutathion S-Transferase) gene fusion system, and the size of fusion protein was estimated to be 59kDa, for TuMV CP was 33 kDa and GST was 26 kDa.

  • PDF

Development of Recombinant Coat Protein Antibody Based IC-RT-PCR and Comparison of its Sensitivity with Other Immunoassays for the Detection of Papaya Ringspot Virus Isolates from India

  • Sreenivasulu, M.;Gopal, D.V.R. Sai
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • Papaya ringspot virus (PRSV) causes the most widespread and devastating disease in papaya. Isolates of PRSV originating from different geographical regions in south India were collected and maintained on natural host papaya. The entire coat protein (CP) gene of Papaya ringspot virus-P biotype (PRSV-P) was amplified by RTPCR. The amplicon was inserted into pGEM-T vector, sequenced and sub cloned into a bacterial expression vector pRSET-A using a directional cloning strategy. The PRSV coat protein was over-expressed as a fusion protein in Escherichia coli. SDS-PAGE gel revealed that CP expressed as a ~40 kDa protein. The recombinant coat protein (rCP) fused with 6x His-tag was purified from E.coli using Ni-NTA resin. The antigenicity of the fusion protein was determined by western blot analysis using antibodies raised against purified PRSV. The purified rCP was used as an antigen to produce high titer PRSV specific polyclonal antiserum. The resulting antiserum was used to develop an immunocapture reverse transcription-polymerase chain reaction (IC-RT-PCR) assay and compared its sensitivity levels with ELISA based assays for detection of PRSV isolates. IC-RT-PCR was shown to be the most sensitive test followed by dot-blot immunobinding assay (DBIA) and plate trapped ELISA.

Nucleotide Sequence of Coat Protein Gene of Kyuri Green Mottle Mosaic Virus Isolated from Zucchini

  • Lee, Su-Heon;Lee, Young-Gyu;Park, Jin-Woo;Park, Hong-Soo;Kim, Yeong-Tae;Cheon, Jeong-Uk;Lee, Key-Woon
    • The Plant Pathology Journal
    • /
    • v.16 no.2
    • /
    • pp.118-124
    • /
    • 2000
  • The coat protein (CP) gene of kyuri green mottle mosaic virus zucchini strain (KGMMV-Z) isolated from zucchini (Cucurbita pepo) in Chonfu, Korea in 1999 was sequenced by the reverse transcription and polymerase chain reaction with degenerate and generate primers originated from tobamoviruses. The degenerate primers were very effective in amplification of KGMMV-Z CP region. The KGMMV-Z CP gene consisted of 486 nucleotides and had the same nucleotide length compared with those of cucurbit-infecting tobamoviruses. KGMMV-Z CP gene shared 43.8, 44.2, and 44.4% nucleotide sequence similarity with the CP gene of cucumber green mottle mosaic virus watermelon strain (CGMMZ-W), CGMMV-KW1, and CGMMV-SH, respectively, whereas three CGMMV strains among themselves showed 98.6-99.6% nucleotide similarity. The deduced amino acids of KGMMV-Z CP gene were 161 amino acid residues with the molecular weight of 17,181 daltons. The first 24 codons of KGMMV-Z CP gene corresponded to the sequences of the N-terminal amino acid of the viral capsid protein. The amino acid sequences of KGMMV-Z CP had 45.3% similarity compared with those of three CGMMV strains. However, the amino acid sequences of CGMMV strains were identical. These results showed that two cucurbit-infecting tobamovirus members, KGMMV-Z and CGMMV were genetically distantly related.

  • PDF

Production and Evaluation of Monoclonal Antibodies Against Recombinant Coat Protein of Lily mottle virus for Western Blotting and Immono-blot Analysis

  • Chung, Bong-Nam;Yoon, Ju-Yeon;Choi, Gug-Sun
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.225-230
    • /
    • 2009
  • Lily mottle virus (LMoV) causes flower quality reduction in Lilium spp. The coat protein gene was RT-PCR-amplified from total RNA extracted from infected lily leaves and the amplified fragment was cloned into the pRSET expression vector tagged with a His-MBP. The plasmid of recombinant coat protein was used to transform an Escherichia coli strain pLysS and was expressed. The coat protein was purified by affinity chromatography using a Ni-NTA resin. The identity of the purified protein was confirmed by SDS-PAGE. The in vitro-expressed protein was used for immunization of mice. The polyclonal and monoclonal antibodies reacted specifically for the detection of LMoV in lily extracts in Western blot. Moreover the monoclonal antibodies reacted with lily extracts in DAS-ELISA with no unspecific or heterologous reactions against other non-serologically related viruses, but the polyclonal antibodies revealed a weak reaction against both infected lily and healthy control.

Cloning of Coat Protein Gene from Korean Isolate Potato Leafroll Virus (PLRV) and Introduction into Potato (Solanum tuberosum) (한국 분리주 감자 잎말림 바이러스 (PLRV) 외피 단백질 유전자의 클로닝 및 감자 내 도입)

  • Seo Hyo-Won;Yi Jung-Yoon;Park Young-Eun;Cho Ji-Hong;Hahm Young-Il;Cho Hyun-Mook
    • Journal of Plant Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.243-250
    • /
    • 2005
  • The coat protein gene (AF296280) of the Korean isolate Potato leafroll virus (PLRV) was cloned and the open reading frame (627 bp) was transformed into potato (Solanum tuberosum cv. Superior). Out of seventeen individual transgenic lines, five lines were identified to confer resistance to PLRV through the five generation's selection program in the greenhouse as well as isolated trial field. Successful introduction and genetic stability of coat protein gene in the genome of potato were confirmed by polymerase chain reaction (PCR), Southern blot hybridization and northern blot hybridization. Some of the transgenic lines were highly resistant to PLRV but did not show any resistance to less homologous Potato virus Y (PVY). Our results suggest that the resistance to PLRV is due to homology dependent gene silencing by sense strand coat protein gene. In addition, the results of field test through five generations showed that there were no significant differences comparing to nontransgenic potatoes in the morphological aspect of shoot as well as tuber, Ho remarkable differences were also observed in the major agronomic characters and yields except for the resistance to PLRV.

Gene Expression in The Fifth Generation of TMV Resistant Transgenic Tobacco Plane at Elevated Temperature (TMV 저항성 형질전환 연초식물체 제 5 세대에서 유전자 안정성 및 고온조건에서의 유전자 발현)

  • 이기원;박성원;이청호;박은경;김상석;최순용
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.4
    • /
    • pp.245-250
    • /
    • 1998
  • Tobacco mosaic virus(TMV) coat protein cDNA was transformed to Nicotiana tabacum cv. NC82 and the transgenic tobacco plants resistant to TMV infection were isolated in the next generation. The expression of TMV coat protein cDNA and genetic stability of the fifth generation of TMV resistant transgenic tobacco plants at the higher temperature were investigated. The TMV coat protein cDNA was amplified by genomic PCR in all the TMV resistant transgenic tobacco plants. The TMV coat protein expressed in the transgenic tobacco plants was detected at very low level by immunoblot hybridization. Even in tansgenic plants that showed the viral symptom only on very late sucker growth (delay type plants), the coat protein expression in the suckers was much less than that of susceptible tobacco infected with TMV. The TMV coat protein expressed in the transgenic tobacco plants was below 0.01% of total protein. Transcription and expression of the coat protein cDNA in delay type plants were observbed at high temperature (38$^{\circ}C$), and TMV replication was suppressed at both 28$^{\circ}C$ and 38$^{\circ}C$. This indicates that unlike the resistance conferred by 'N' gene. TMV resistance of transgenic tobacco plant won't break down at high temperature.

  • PDF

Identification of Grapevine leafroll-associated virus 3 Ampelovirus from Grapevines in Korea

  • Kim, Hyun-Ran;Lee, Sin-Ho;Lee, Bong-Choon;Kim, Yeong-Tae;Park, Jin-Woo
    • The Plant Pathology Journal
    • /
    • v.20 no.2
    • /
    • pp.127-130
    • /
    • 2004
  • Grapevine leaf roll-associated virus 3 (GLRaV-3) is one of the most important viral diseases of grapevine in the world. In this study, GLRaV-3 Ampelovirus was identi-fied from grapevines in Korea by analyzing viral coat protein size, nucleotide, and amino acid sequences. The molecular weight of viral coat protein from virus-infected in vitro plantlets was determined by western blot using a commercial GLRaV-3 polyclonal antibody. Western blot analysis showed a coat protein of about 43 kDa. RT-PCR product of about 942 bp which encoded the coat protein (CP) gene was amplified with specific primers. When the viruses existed at low titers in the host plant, the dsRNA had very specific template in RT- PCR amplification of fruit tree viruses. Especially, small-scale dsRNA extraction method was very reliable and rapid. Sequence analysis revealed that the CP of the GLRaV-3 Ko consisted of 942 bp nucleotide, which encoded 314 amino acid residues. The CP gene of GLRaV-3 Ko had 98.9% nucleotide sequence and 98.7% amino acid sequence identities with earlier reported GLRaV-3. This is the first report on molecular assay of GLRaV-3 Ampelovirus identified from Korea. The GLRaV-3 Ko CP clone would be very useful for breeding of virus resistant grapevines.

Tobacco plant transformed with a coat protein gene sequence of TMV (TMV외피 단백질 유전자의 연초로의 형질전환)

  • 이기원;박성원;김남원;박은경
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.15 no.2
    • /
    • pp.161-166
    • /
    • 1993
  • A double - stranded cDNA fragment (436bp) encoding coat protein of tobacco mosaic virus(TMV) was derived from the total 480nucleotides gene after reverse transcription of TMV RNA, and subclorled into a plant expression vector pBl 121, resulting in pBL 430. The plasmid DNA containing this chimeric gene was moved from E. cofi to Agrobacterium tumefaciens strain A28l, and was introduced in시 the tobacco plant by the Agrobocterium Ti - mediated transformtion system. The transformants were selected on a selection media containing kanamycin. The shoots add roots could be differentiated from the explants and whole plants were obtained. From Southern blot hybridization analysis, DNA extracted from transformants, it could be conformed that the chimeric gene fragment was inserted into the genomic DNA of tobacco plant.

  • PDF

Transformation of Fuji Apple Plant Harboring the Coat Protein Gene of Cucumber mosaic virus

  • Lee, C.H.;Hyung, N.I.;Lee, G.P.;Choi, J.Y.;Kim, C.S.;Choi, S.H.;Jang, I.O.;Han, D.H.;Ryu, K.H.
    • The Plant Pathology Journal
    • /
    • v.19 no.3
    • /
    • pp.162-165
    • /
    • 2003
  • Transformation of Fuji apple (Malus domestica 'Fuji') was performed using Agrobacterium tumefaciens harboring a coat protein (CP) gene of Cucumber mosaic virus (CMV). A plasmid DNA containing the virus CP and NPT II genes was introduced into the loaves of apple by th e Agrobacterium - mediated transformation procedure. Regenerated transformants of the apple were obtained by kanamycin resistance conferred by the introduced NPT II gene. PCR analysis showed that 3 out of 20 putatively selected R0 plant lines contain the CMV-CP gene. Nine putative transgenic lines out of 20 lines were investigated with the PCR analysis; 5 regenerants produced a 450 bp DNA band and 3 regenerants showed a 671 bp DNA band for the NPT II and CMV-CP genes, respectively. Southern hybyidization results demonstrate the successful integration of the CMV-CP gene into the genome of the apple. This is the first report on the generation of useful vius resistance source of transgenic apple for molecular breeding program.