• Title/Summary/Keyword: coat protein gene

Search Result 190, Processing Time 0.026 seconds

Allergic risk assessment of genetically modified cucumber mosaic virus resistant pepper (유전자변형 바이러스 저항성 고추의 알레르기 안전성)

  • Son, Dae-Yeul
    • Food Science and Preservation
    • /
    • v.22 no.6
    • /
    • pp.901-907
    • /
    • 2015
  • Genetically modified (GM) pepper H15 containing the gene for cucumber mosaic virus (CMV) coat protein (CP) and its control line non-GM pepper P2377 were investigated for their allergic risk. Amino acid sequence of the inserted gene product CMV-CP was compared with those of known allergens. No known allergen had greater than 35% amino acid sequence homology over an 80 amino acid window or more than 8 consecutive identical amino acids. Protein patterns of GM and non-GM pepper extracts were evaluated by SDS-PAGE, which showed similar distribution of protein bands for both GM and non-GM pepper. Antigen-antibody reactions were compared between GM and its non-transgenic parental control. ELISA and immunoblot analysis of sera from allergic patients showed some IgE reactivity; however, no differences were observed between GM pepper H15 and P2377. We therefore conclude that CMV-CP is less likely to be an allergen; the protein composition and allergenicity of the GM pepper H15 is not different from that of P2377 and safe as a commercial host.

The coat protein of Turnip crinkle virus is required a full-length to maintain suppressing activity to RNA silencing but no relation with eliciting resistance by N-terminal region in Arabidopsis.

  • Park, Chang-Won;Feng Qu;Tao Ren;T. Jack Morris
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.76.1-76
    • /
    • 2003
  • The coat protein (CP) of Turnip crinkle virus (TCV) is organized into 3 distinct domains, R domain (RNA-binding) connected by an arm, 5 domain and P domain. We have previously shown that the CP of TCV strongly suppresses RNA silencing, and have mapped N-terminal R domain of which is also the elicitor of resistance response in the Arabidopsis ecotype Di-17 carrying the HRT resistance gene. In order to map the region in the TCV CP that is responsible for silencing suppression, a series of CP mutants were constructed, transformed into Agrobacterium, coinfiltrated either with HC-Pro (the helper component proteinase of tobacco etch potyvirus) known as a suppressor of PTGS or GFP constructs into leaves of Nicotiana benthmiana expressing GFP transgenically. In the presence of HC-Pro, all CP mutants were well protected, accumulating mutant CP mRNAs and their proteins even 5 days post-infiltration (DPI). In the presence of GFP, some mutant constructs which showed the accumulation of CP mutants and GFP mRNAs at early stage but eventually degraded at 5 DPI. Only a mutant which carrying 4 amino acid deletion of R domain was tolerable to maintain suppressing activity, suggesting that the suppressing activity is not directly related with the eliciting activity. A transient assay also revealed that the mutants synthesized their proteins, suggesting that a full length of CP sequences and its intact structure are required to stabilize CP, which suppresses the RNA silencing.

  • PDF

First Report of Freesia sneak virus in Freesia spp. in Korea

  • Yoon, Ju-Yeon;Choi, Youn-Jung;Choi, Gug-Seoun;Choi, Seung-Kook
    • Research in Plant Disease
    • /
    • v.19 no.4
    • /
    • pp.313-318
    • /
    • 2013
  • In March, 2013, twenty symptomatic freesia plants (10 plants of cultivar Shiny Lemon and 10 plants of cultivar Shiny Gold), with striking virus-like symptoms were collected in Cheongju, Korea. The plants showed chlorotic, coalescing, interveinal, whitish, necrotic, mosaic, mottling or dark brown-to-purple necrotic spots on leaves. Freesia crude sap was directly analyzed by transmission electron microscopy, which potyvirus particles as well as long virus-like particles were detected. Total RNA extracts were analyzed for the infection of Freesia sneak virus (FreSV) by reverse transcription (RT)-PCR with primers specific to FreSV coat protein (CP) gene based on the sequences of FreSV isolates (GenBank No. GU071089, FJ807730 and DQ885455), showing 9 of 20 plants were infected. All 1305bp RT-PCR products were cloned and sequenced. Comparisons of nucleotide and deduced amino acid sequences using BLAST and bioinformatics tools resulted in 99 to 100% sequence identity with FreSV isolates FOV, Virginia, and Italy, confirming FreSV in 9 symptomatic freesia plants. Of 9 determined cDNAs of FreSV isolates, sequences of 5 cDNA clones were identical (GenBank No. AB811437) and sequences of 4 cDNA clones were identical (GenBank No. AB811792). To our knowledge, this is the first report of FreSV from Freesia spp. in Korea.

Rapid Detection and Identification of Cucumber Mosaic Virus by Reverse Transcription and Polymerase Chain Reaction (RT-PCR) and Restriction Analysis (역전사 중합효소련쇄반응(RT-PCR)과 제한효소 분석을 이용한 오이 모자이크 바이러스의 신속한 검정과 동정)

  • Park, Won Mok
    • Journal of Plant Biology
    • /
    • v.38 no.3
    • /
    • pp.267-274
    • /
    • 1995
  • Based upon the nucleotide sequence of As strain of cucumber mosaic virus (CMV-As0 RNA4, coat protein (CP) gene was selected for the design of oligonucleotide primers of polymerase chain reaction (PCR) for detection and identification of the virus. Reverse transcription and polymerase chain reaction (RT-PCR) was performed with a set of 18-mer CMV CP-specific primers to amplify a 671 bp fragment from crude nucleic acid extracts of virus-infected leaf tissues as well as purified viral RNAs. The minimum concentrations of template viral RNA and crude nucleic acids from infected tobacco tissue required to detect the virus were 1.0 fg and 1:65,536 (w/v), respectively. No PCR product was obtained when potato virus Y-VN RNA or extracts of healthy plants were used as templates in RT-PCR using the same primers. The RT-PCR detected CMV-Y strain as well as CMV-As strain. Restriction analysis of the two individual PCR amplified DNA fragments from CMV-As and CMV-Y strains showed distinct polymorphic patterns. PCR product from CMV-As has a single recognition site for EcoRI and EcoRV, respectively, and the product from CMV-Y has no site for EcoRI or EcoRV but only one site for HindIII. The RT-PCR was able to detect the virus in the tissues of infected pepper, tomato and Chinese cabbage plants.

  • PDF

Comparative Analysis of Genetic Variation of Cucumber Mosaic Virus from Commelina communis in Korea (국내 닭의장풀에서 분리된 오이모자이크바이러스 분리주들의 외피단백질 유전자와 병징 다양성 비교)

  • Park, Tae-Seon;Hong, Jin-Sung
    • Research in Plant Disease
    • /
    • v.24 no.2
    • /
    • pp.170-173
    • /
    • 2018
  • Three isolates of Cucumber mosaic virus isolated from Commelina communis plants showing chlorosis and mosaic were collected in Chungju and Chuncheon, Korea. To confirm genetic variation of these three isolates (CMV-Co, CMV-Co2, and CMV-Co3), we performed PCR-RFLP and sequence analysis. Sequences of coat protein genes of CMV-C0, -Co2 and -Co3 were compared with CMV-Fny and showed 96.3%, 96.3%, and 95.9% similarities, respectively. In host reactions, three CMV-Co isolates induced systemic necrosis in Cucurbita pepo unlike CMV-Fny and CMV-Co, CMV-Co2 and CMV-Co3 observed differential symptoms responses in Physalis angulata and Nicotiana rustica. These results indicated that three isolates of CMV isolated from C. communis have genetic and biological variation.

Development of Potato Virus Y-Resistant Transgenic Potato (감자 바이러스 Y 저항성 형질전환 감자 개발)

  • PARK, Young Doo;RONIS D.H.;DUYSEN M.E.;CHENG Z.M.;LORENZEN J.H.
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.5
    • /
    • pp.313-317
    • /
    • 1997
  • Leaf segments of the potato (Solanum tuberosum L.) genotypes, ND860-2, Norchip, Russet Norkotah, Goldrush, and Norqueen Russet were transformed with the coat protein gene of potato virus Y (PVY). The white-skinned genotypes, ND860-2 and Norchip, were easily transformed and regenerated into shoots, whereas the three russet-skinned genotypes had low frequencies of regeneration. Transformed shoots were generally recovered in four to six weeks. Antibody to PVY coat protein detected a single band of 30 kD in western blots of transgenic plants. Transformed plants had a normal phenotype in the greenhouse and many showed a delayed buildup of PVY following inoculation. Several transgenic lines had negative ELISA readings 85 days after inoculation. Transgenic lines which did not show detectable levels of PVY antigen will be further tested for resistance to PVY.

  • PDF

Virulence differentiation of bean common mosaic potyvirus in leguminosae crops

  • Park, H.S.;T.S.Jin;Park, J.W.;Lee, S.H.;J.U.Cheon;Park, J.K.;Y.Takanami
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.141.1-141
    • /
    • 2003
  • Forty six isolates of bean common mosaic virus (BCMV) collected from azuki bean, mungbean, kidney bean, cowpea, broad bean and peanut were classified into three groups based on biological, serological, cytopathological, and molecular characteristics. Group I induced vein-banding symptoms in cowpea which was similar to those produced by the BCMV-cowpea strain. Group II caused mosaic symptoms in azuki bean but not in peanut and tobacco. Since this character was different from that of previously described BCMV strain, group II may not belong to BCMV GroupIII induced vein-clearing symptoms in azuki bean, kidney bean and peanut, which are typical symptoms for BCMV-peanut stripe virus strain. Virus inclusion patterns of BCMV groups were similar to those of Potyvirus subdivision III with the scroll, pinwheel and long laminated inclusions. However, the inclusions of laminated aggregates were never observed in mungbean isolates. Multiple alignment as well as cluster dendrograms of 3'noncoding region (3'-NCR) and a part of coat protein gene (CP) suggested that group I belongs to the BCMV-cowpea strain, group II to the BCMV-azuki bean strain, and group III to the BCMV-peanut stripe virus strain. Since molecular phylogenesis of BCMV based on nucleotides of 3'-NCR and coat protein differed from the grouping based on virulence differentiation, and BCMV groups are more closely related to each other with the same host origin, other characteristics of those strains are under investigation.

  • PDF

First Report on Poinsettia mosaic virus in Korea

  • Chung, B.N.;Lee, E.K.;Jeong, M.I.;Kim, H.R.
    • The Plant Pathology Journal
    • /
    • v.20 no.3
    • /
    • pp.220-223
    • /
    • 2004
  • Most plants of commercial poinsettia cultivars grown from cuttings develop mosaic and chlorotic dot symptoms on leaves. Reverse transcription-polymerase chain reaction (RT-PCR) test showed that they were infected with Poinsettia mosaic virus (PnMV). In a survey of commercially grown poinsettias conducted in Korea, PnMV was detected in ten of ten poinsettia cultivars sampled and in 100% of 178 samples tested. The virus has isometric particles and about 29 nm in diameter. Crystalline virus particles were observed in cytoplasm of cells of diseased plants by transmission electron microscopy. Nucleotide sequence of coat protein gene of PnMV- Kl showed 97.3% homology with that of a German isolate. This is the first report on PnMV in Korea.

Detection of Lily Symptomless Virus Using RT-PCR Technique (RT-PCR 기법을 이용한 Lily Symptomless Virus의 검정)

  • Joung, Young-Hee;Jeon, Jae-Heung;Choi, Kyung-Hwa;Kim, Hyun-Soon;Joung, Hyouk
    • Korean Journal Plant Pathology
    • /
    • v.12 no.2
    • /
    • pp.187-190
    • /
    • 1996
  • 백합으로부터 total RNA를 분리하여 LSV 외피단백질 유전자의 551 bp에 해당하는 특정 염기서열을 증폭할 수 있는 primer로 RT-PCR를 수행하였다. 그 결과 Lilium oriental hybrid cvs. Miani, Marco Polo, Casablanca, Le Reve 품종에서 551 bp의 DNA 절편이 증폭되었고 이 절편의 염기서열을 분석한 결과 LSV외피단백질 유전자의 일부임을 확인할 수 있었다. 그러므로 RT-PCR 방법으로, 실험에 사용하 s4품종 모두 LSV에 감염되어 있음을 알 수 있었다.

  • PDF

Identification and Characterization of Tobamoviruses Isolated from Commercial Pepper Seeds (시판 고추 종자에서 분리한 Tobamovirus의 동정 및 특성 조사)

  • 한정헌;손성한;나용준
    • Research in Plant Disease
    • /
    • v.7 no.3
    • /
    • pp.164-169
    • /
    • 2001
  • Two Tobamoviruses showing different local lesion types on Nicotiana glutinosa was isolated from commercial pepper seeds. These viruses were designated Tobamovirus-6 (T-6) and Tobamovirus-19 (T-19). The biological and serological assays revealed that T-6 and T-19 were closely related to Pepper mild mottle virus (PMMoV) and Tomato mosaic virus (ToMV), respectively, The isolates also had low similarity in the array of viral coat protein gene sequences, of which T-19 was most identical to known strains of ToMV, while T-6 was closely related to PMMoV.

  • PDF