• Title/Summary/Keyword: coat protein (CP)

Search Result 131, Processing Time 0.026 seconds

Effect of Timing of IPTG Addition on Expression of Turnip Mosaic Virus Coat Protein Gene in Escherichia Coli (IPTG의 첨가 시간이 대장균(Escherichia coli)에서 순무 모자이크 바이러스(TuMV)의 외피단백질 발현에 미치는 영향)

  • Kim, Su-Joong;Park, Won-Mok;Ryu, Ki-Hyun;Lee, Sang-Seon;Lee, Se-Yong
    • Korean Journal Plant Pathology
    • /
    • v.13 no.4
    • /
    • pp.248-254
    • /
    • 1997
  • Expression vector (pGEX-Tu) for the coat protein (CP) gene of turnip mosaic virus Ca strain (TuMV-Ca) was constructed by incorporation of TuMV CP gene into pGEX-KG vector which had ${\beta}$-galactosidase gene and IPTG (isopropylthio-${\beta}$-D-galactoside) induction site. The results of ELISA and western hybridization indicated that optimal condition of the expression were when IPTG and western hybridization indicated that optimal condition of the expression were when IPTG induction was carried out on YTA medium with ampicillin in 2 hours after the E. coli seed inoculation ($A_{595}$=0.1/ml). TuMV CP gene was expressed with GST (Glutathion S-Transferase) gene fusion system, and the size of fusion protein was estimated to be 59kDa, for TuMV CP was 33 kDa and GST was 26 kDa.

  • PDF

Development of Potato Virus Y Resistant Tobacco Plant by Transformation of the Untranslatable Viral Coat Protein Encoding cDNA (감자 바이러스 Y 비전이성 외피단백질 cDNA의 형질전환에 의한 바이러스 저항성 연초품종 개발)

  • 이청호;이영기;강신웅;박성원;김상석;박은경
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.19 no.2
    • /
    • pp.117-123
    • /
    • 1997
  • Viral coat protein (CP) encoding cDNA with artificial start and stop codons was synthesized by reverse-transcriptase polymerase chain reaction (RT-PCR) from the Korean isolate of potato virus Y-vein nectrosis strain (pVY-VN). To make PVY CP cDNA to untranslatable form, three stop codons were inserted near the start codon by "megaprimer-PCR" method. The untranslatable CP cDNA was subcloned to plant expression vector and transferred to N. tabacum cv. NC82 by Agrobacterium-mediated transformation. Highly resistant plants to PVY infection were screened, based on symptom development after mechanical virus inoculation. By genomic PCR and Southern blot analysis, one or more copies of the untranslatable CP gene were found in all transformants. From northern blot analysis, highly resistant transgenic lines had very low level of CP transcript but susceptible lines had high level, suggesting resistance to PVY infection should be related to RNA-mediated mechanism.mechanism.

  • PDF

Induction of RNA-mediated Resistance to Papaya Ringspot Virus Type W

  • Krubphachaya, Pongrit;Juricek, Mila;Kertbundit, Sunee
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.404-411
    • /
    • 2007
  • Transformation of cantaloupes with the coat protein (cp) gene of papaya ringspot virus type W (PRSV-W), Thai isolate, was used to introduce virus resistance. Binary vectors containing either the full length coat protein coding region under control of the 35S CaMV promoter(pSA1175), or the inverted-repeat of a coat protein coding region (pSA1304), were constructed and used for Agrobacteriummediated transformation of cotyledonary explants of the cantaloupe cultivar Sun Lady. Four independent transgenic lines were obtained using pSA1304 and one using pSA1175. Integration of the PRSV-W cp gene into the genome of these transgenic lines was verified by PCR amplification, GUS assays and Southern blot hybridization. In vitro inoculation of these lines with PRSV-W revealed that whereas the line containing pSA1175 remained sensitive, the four lines containing pSA1304 were resistant. The presence of small RNA species, presumably siRNA, corresponding to regions of the viral cp gene in transgenic lines resistant to PRSV-W supports the involvement of post-transcriptional gene silencing in the establishment of resistance.

Genetic Diversity in the Coat Protein Genes of Prune dwarf virus Isolates from Sweet Cherry Growing in Turkey

  • Ozturk, Yusuf;Cevik, Bayram
    • The Plant Pathology Journal
    • /
    • v.31 no.1
    • /
    • pp.41-49
    • /
    • 2015
  • Sweet cherry is an important fruit crop with increasing economical value in Turkey and the world. A number of viruses cause diseases and economical losses in sweet cherry. Prune dwarf virus (PDV), is one of the most common viruses of stone fruits including sweet cherry in the world. In this study, PDV was detected from 316 of 521 sweet cherry samples collected from 142 orchards in 10 districts of Isparta province of Turkey by double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA). The presence of PDV in ELISA positive samples was confirmed in 37 isolates by reverse transcription- polymerase chain reaction (RT-PCR) method. A genomic region of 862 bp containing the coat protein (CP) gene of PDV was re-amplified from 21 selected isolates by RT-PCR. Amplified DNA fragments of these isolates were purified and sequenced for molecular characterization and determining genetic diversity of PDV. Sequence comparisons showed 84-99% to 81-100% sequence identity at nucleotide and amino acid level, respectively, of the CP genes of PDV isolates from Isparta and other parts of the world. Phylogenetic analyses of the CP genes of PDV isolates from different geographical origins and diverse hosts revealed that PDV isolates formed different phylogenetic groups. While isolates were not grouped solely based on their geographical origins or hosts, some association between phylogenetic groups and geographical origins or hosts were observed.

Study on Environmental Risk Assessment for Potential Effect of Genetically Modified Nicotiana benthamiana Expressing ZGMMV Coat Protein Gene

  • Kim, Tae-Sung;Yu, Min-Su;Koh, Kong-Suk;Oh, Kyoung-Hee;Ahn, Hong-Il;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.353-359
    • /
    • 2006
  • Transgenic Nicotiana benthamiana plants harboring the coat protein(CP) gene of Zucchini green mottle mosaic virus(ZGMMV) were chosen as a model host for the environmental risk assessment of genetically modified plants with virus resistance. This study was focused on whether new virus type may arise during serial inoculation of one point CP mutant of ZGMMV on the transgenic plants. In vitro transcripts derived from the non-functional CP mutant were inoculated onto the virus-tolerant and -susceptible transgenic N. benthamiana plants. Any notable viral symptoms that could arise on the inoculated transgenic host plants were not detected, even though the inoculation experiment was repeated a total of ten times. This result suggests that potential risk associated with the CP-expressiing transgenic plants may not be significant. However, cautions must be taken as it does not guarantee environmental safety of these CP-mediated virus-resistant plants, considering the limited number of the transgenic plants tested in this study. Further study at a larger scale is needed to evaluate the environmental risk that might be associated with the CP-mediated virus resistant plant.

Virus-resistant and susceptible transgenic Nicotiana benthamiana plants expressing coat protein gene of Zochini green mottle mosaic virus for LMO safety assessment

  • Park, M.H.;B.E. Min;K.H. Ryu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.146.1-146
    • /
    • 2003
  • Transgenic Nicotiana benthmiana plants harboring and expressing coat protein (CP) gene of Zucchini green mottle mosaic virus (ZGMMV) were generated for both virus-resistant screening and complementation analysis of related viruses and environmental safety assessment (SA) of living modified organism (LMO) purposes. Transformation of leaf disc of N. benthamiana was performed using Agrobacterium-mediated method and the pZGCPPGA748 containing the ZGMMV CP and NPTII genes. Two kinds of transgenic homozygous groups, virus-resistant and -susceptible lines, were obtained by screening of challenging homologous virus for T1 generations. Complementation of CP-deficient related virus was analyzed using the susceptible line of ZGMMV. These two pathologically different lines can be useful for host-virus interactions and LMO environmental SA.

  • PDF

Phylogenetic and Recombination Analysis of Apple Stem Grooving Virus Isolates from Pears in Korea

  • Nam-Yeon Kim;Rae-Dong Jeong
    • Research in Plant Disease
    • /
    • v.29 no.2
    • /
    • pp.193-199
    • /
    • 2023
  • The apple stem grooving virus (ASGV) is one of the most harmful latent viruses infecting pear orchards worldwide. To examine the genetic diversity of ASGV in Korean pear orchards, the complete coat protein (CP) gene of five ASGV isolates collected from various regions were identified. The five Korean ASGV isolates showed 88-96% nucleotide identity with the 11 isolates worldwide occurring elsewhere in the world. Phylogenetic analysis of five isolates, as well as the previously sequenced isolates, indicated that the ASGV clusters had no correlation with the host or geographical regions of origin. Recombination analysis showed that one of the five Korean isolates is a recombinant, with a recombination site in the CP gene region (nt 532-708). This study is the first report of natural recombination within the CP gene of ASGV isolates from pears grown in Korea.

PVY Resistant Transgenic Potato Plants (cv Claustar) Expressing the Viral Coat Protein

  • Gargouri-Bouzid Radhia;Jaoua Leila;Mansour Riadh Ben;Hathat Yemna;Ayadi Malika;Ellouz Radhouane
    • Journal of Plant Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.143-148
    • /
    • 2005
  • The coat protein mediated resistance to potato virus Y is assessed here in transgenic potato plants (Solanum tuberosum L., cv Claustar). Therefore, the corresponding cDNA from tunisian isolate of the virus was cloned into Agrobacterium tumefaciens binary vector. The transgenic lines were subsequently analysed for the presence and expression of the transgene. The CP cDNA copy number was determined for kanamycin resistant plants. Three selected transgenic lines and their S1 progeny resulting from tuber germination showed a high protection level against the virus. These data appear to support the hypothesis that the virus resistance is mediated by the translated viral coat protein expressed in transgenic potato lines.

Transformation of Fuji Apple Plant Harboring the Coat Protein Gene of Cucumber mosaic virus

  • Lee, C.H.;Hyung, N.I.;Lee, G.P.;Choi, J.Y.;Kim, C.S.;Choi, S.H.;Jang, I.O.;Han, D.H.;Ryu, K.H.
    • The Plant Pathology Journal
    • /
    • v.19 no.3
    • /
    • pp.162-165
    • /
    • 2003
  • Transformation of Fuji apple (Malus domestica 'Fuji') was performed using Agrobacterium tumefaciens harboring a coat protein (CP) gene of Cucumber mosaic virus (CMV). A plasmid DNA containing the virus CP and NPT II genes was introduced into the loaves of apple by th e Agrobacterium - mediated transformation procedure. Regenerated transformants of the apple were obtained by kanamycin resistance conferred by the introduced NPT II gene. PCR analysis showed that 3 out of 20 putatively selected R0 plant lines contain the CMV-CP gene. Nine putative transgenic lines out of 20 lines were investigated with the PCR analysis; 5 regenerants produced a 450 bp DNA band and 3 regenerants showed a 671 bp DNA band for the NPT II and CMV-CP genes, respectively. Southern hybyidization results demonstrate the successful integration of the CMV-CP gene into the genome of the apple. This is the first report on the generation of useful vius resistance source of transgenic apple for molecular breeding program.

Role of Intergenic and 3'-Proximal Noncoding Regions in Coat Protein Expression and Replication of Barley yellow dwarf virus PAV

  • Moon, Jae-Sun;Nancy K. McCoppin;Leslie L. Domier
    • The Plant Pathology Journal
    • /
    • v.17 no.1
    • /
    • pp.22-28
    • /
    • 2001
  • Barley yellow dwarf virus PAV (BYDV-PAV) has a 5.7-kb positive-sense single-stranded RNA genome that contains six open reading frames (ORFs). BYDV-PAV produces three subgenomic RNAs (sgRNAs). The largest of which encodes the coat, 17-kDa, and readthrough proteins from two initiation codons. To investigate the role of intergenic and 3'-proximal noncoding regions (NCRs) in coat protein (CP) expression and BYDV-PAV replication, a full-length infectious cDNA of the RNA genome of an Illinois isolate of BYDV-PAV was constructed downstream of the Cauliflower mosaic virus-35S promoter. Linear DNA molecules of these cDNAs were infectious, expressed the 22-kDa CP, and produced both genomic RNA sgRNAs in ratios similar to those observed in protoplasts inoculated with viral RNA. The portion of 5'NCR of sgRNA1 between ORFs 2 and 3 was not required for, but enhanced translation of CP from ORF3. Mutants containing deletions in the NCR downstream of ORF5 failed to replicate in oat protoplasts. These results indicate that an intact 3$^1$NCR is required for BYDV-PAV replication.

  • PDF