• Title/Summary/Keyword: coat protein

Search Result 369, Processing Time 0.029 seconds

Papaya Ringspot Virus Coat Protein Gene for Antigen Presentation in Escherichia coli

  • Chatchen, Supawat;Juricek, Mila;Rueda, Paloma;Kertbundit, Sunee
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.16-21
    • /
    • 2006
  • The coat protein (CP) of Papaya ringspot virus (PRSV) was analyzed for presentation of the antigenic peptide of animal virus, Canine parvovirus (CPV), in Escherichia coli (E. coli). The 45 nucleotides fragment coding for the 15-aa peptide epitope of the CPV-VP2 protein was either inserted into the PRSV-cp gene at the 5', 3' ends, both 5' and 3' ends or substituted into the 3' end of the PRSV cp gene. Each of the chimeric PRSV cp genes was cloned into the pRSET B vector under the control of the T7 promoter and transformed into E. coli. The recombinant coat proteins expressed from different chimeric PRSV-cp genes were purified and intraperitoneally injected into mice. All of the recombinant coat proteins showed strong immunogenicity and stimulate mice immune response. The recombinant coat proteins containing the CPV epitope insertion at the C terminus and at both N and C termini elicited ten times higher specific antisera in immunized mice compared with the other two recombinant coat proteins which contain the CPV epitope insertion at the N terminus and substitution at the C terminus.

Construction of ELISA System for the Detection of Indian citrus ringspot virus (Indian citrus ringspot virus의 ELISA 진단 시스템 구축)

  • Shin, Myeung-Ju;Kwon, Young-Chul;Ro, Hyeon-Su;Lee, Hyun-Sook
    • Research in Plant Disease
    • /
    • v.18 no.3
    • /
    • pp.231-235
    • /
    • 2012
  • Indian citrus ring spot virus (ICRSV) is known to cause a serious disease to citrus, especially to Kinnow mandarin, the popular cultivated citrus species in India. In this study, we developed diagnostic systems based on enzyme-linked immunosorbent assay (ELISA). In order to generate antibodies against ICRSV coat protein, we overexpressed the coat protein in Escherichia coli using the pET15b expression vector containing an optimized ICRSV coat protein gene. The recombinant ICRSV coat protein was overexpressed as soluble form at $37^{\circ}C$ upon IPTG induction. The protein was purified to 95% in purity by Ni-NTA column chromatography. The purified protein was immunized to rabbit for the generation of polyclonal antibody (PAb). The PAb showed a specific immunoreaction to recombinant ICRSV coat protein in western blot analysis and ELISA. Diluted rabbit antisera (10,000 fold) could detect less than 10 ng and 5 ng of the target protein in western blot and ELISA analysis, respectively.

Changes of Protein Bodies in Endosperm Cells during Embryo Development of Ginseng (Panax ginseng C.A. Meyer) Seeds - Seeds with Red Seed Coat and Indehiscent Seeds - (인삼(Panax ginseng C.A. Meyer) 종자의 배발달에 따른 배유세포의 단백과립 변화 - 홍숙 및 미개갑 종자 -)

  • 유성철
    • Journal of Plant Biology
    • /
    • v.35 no.1
    • /
    • pp.45-51
    • /
    • 1992
  • The changes of protein bodies in endosperm cells of both seeds with red seed coat and indehiscent seeds of Panax ginseng C.A. Meyer have been investigated in relation to the embryo development. In the early stage of seeds with red seed coat, spherical spherosomes were distributed in endosperm cells. Protein bodies were formed from vacuoles containing the storage protein. Cell organelles were hardly observed in the cytoplasm. In the late stage of the seed with red seed coat, the endosperm was filled with spherosomes and protein bodies. The protein bodies consisted of amorphous inclusions with high electron density or proteinaceous matrix with even electron density. In the seed of in dehiscence, the protein body in endosperm cells contained globoids and protein crystalloids. The globoid of protein body had a electron dense materials. Umbiliform layer was formed between embryo and endosperm. The deformation patterns of endosperm cell wall and the cellulose microfibril were observed in endosperm cells near the umbiliform layer. Umbiliform layer consisted of lipid body and autolyzed cell debris. The protein body of endosperm cell near the umbiliform layer showed various degenerative patterns, and so electron density of proteinaceous matrix was gradually decreased.reased.

  • PDF

Virus-Resistance Analysis in Transgenic Tobacco Expressing Coat Protein Gene of Cucumber Mosaic Virus (오이모자이크바이러스 외피단백질유전자 발현 담배의 바이러스 저항성 분석)

  • 손성한;김경환;박종석;황덕주;한장호;이광웅;황영수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.3
    • /
    • pp.153-160
    • /
    • 1997
  • Cucumber mosaic virus (CMV) leads to a cause of poor crop productivity and quality. To solve this problem, we attempted to develop a virus-resistance tobacco plants by using viral coat protein (CP) gene. Transgenic tobacco plants expressing CMV CP gene were analysed by the resistance upon CMV infection. The virus-resistance was measured in $\textrm{T}_{1}$, generation by the inhibition of plant growth and the expression of the mosaic symptoms infected with CMV. The transgenic lines were divided into four groups: highly resistant, resistant, moderate and susceptible based on their growth and symptom severity. Out of 39 transgenic lines, 16 lines showed significant virus-resistance. And of resistant lines, 2 lines were designated highly resistant based on the facts that they achieved similar plant height to that of non-infected tobacco plants and showed lower disease symptom than that of other lines. The steady state level of CP RNA and coat protein level were measured by northern blot and immunoblot analysis. The CP RNA was highly accumulated in most resistant and moderate lines but barely detected in susceptible lines. The coat protein was detected in most lines regardless of their resistance to CMV. from this result, virus-resistance appeared to correlate more with CP RNA level than the level of coat protein. However, in two highly resistant lines, CP RNA level was unexpectedly low. This unexpected phenomenon need to be further investigated.

  • PDF

Complementary DNA Cloning and Sequencing of the Coat Protein Gene of Potato Virus Y-Ordinary Korean Strain (감자바이러스 Y의 OK계통에 대한 외피단백질 유전자 cDNA 클로닝 및 염기서열 분석)

  • 정승룡;최장경;길전행이;이부영
    • Korean Journal Plant Pathology
    • /
    • v.11 no.1
    • /
    • pp.73-79
    • /
    • 1995
  • Complementary DNAs (cDNAs) to the coat protein gene of an ordinary Korean strain of potato virus Y (PVY-OK) isolated from potato (cv. Superior) were synthesized and cloned into a plasmid pUC119 and sequenced. The RNA of the virus propagated in tobacco (Nicotinaa sylvestris) was extracted by the method of phenol extraction. The first strand of cDNAs to the coat protein penomic RNA of the virus was made by Moloney murine leukemia virus reverse transcriptase. The cDNA were synthesized and amplified by the method of polymerase chain reaction (PCR) using a pair of oligonucleotide primers. PVYCP3P and PVYCP3M. The size of cDNAs inserted in pUC119 plasmid was estimated as about 840 bp upon agarose gel electrophoresis. Double stranded cDNAs were transformed into the competent cell of E. coli JM109. Sequence analysis of cDNAs was conducted by the dideoxynucleotide chain termination method. Homology of cDNAs of the PVY-OK coat protein genomic RNA with those of PVY-O (Japan), PVY-T (Japan), PVY-TH (Japan), PVYN (The Netherlands),and PVYY (France) was represented as 97.3%, 88.9%, 89.3%, 89.6% and 98.5%, respectively. Homology at the amino acid level turned out to the be 97.4%, 92.5%, 92.9%, 92.9% and 98.5%, respectively.

  • PDF

Expression and Distribution of the Guanine Nucleotide-binding Protein Subunit Alpha-s in Mice Skin Tissues and Its Association with White and Black Coat Colors

  • Yin, Zhihong;Zhao, Xin;Wang, Zhun;Li, Zhen;Bai, Rui;Yang, Shanshan;Zhao, Min;Pang, Quanhai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1392-1397
    • /
    • 2016
  • Guanine nucleotide-binding protein subunit alpha-s ($Gn{\alpha}s$) is a small subunit of the G protein-couple signaling pathway, which is involved in the formation of coat color. The expression level and distribution of $Gn{\alpha}s$ were detected by quantitative real-time-polymerase chain reaction (qPCR), western blot, and immunohistochemistry to investigate the underlying mechanisms of coat color in white and black skin tissues of mice. qPCR and western blot results suggested that $Gn{\alpha}s$ was expressed at significantly higher levels in black mice compared with that of white mice, and transcripts and protein possessed the same expression in both colors. Immunohistochemistry demonstrated $Gn{\alpha}s$ staining in the root sheath and dermal papilla in hair follicle of mice skins. The results indicated that the $Gn{\alpha}s$ gene was expressed in both white and black skin tissues, and the expression level of $Gn{\alpha}s$ in the two types of color was different. Therefore, $Gn{\alpha}s$ may be involved in the coat color formation in mice.

Identification of Grapevine leafroll-associated virus 3 Ampelovirus from Grapevines in Korea

  • Kim, Hyun-Ran;Lee, Sin-Ho;Lee, Bong-Choon;Kim, Yeong-Tae;Park, Jin-Woo
    • The Plant Pathology Journal
    • /
    • v.20 no.2
    • /
    • pp.127-130
    • /
    • 2004
  • Grapevine leaf roll-associated virus 3 (GLRaV-3) is one of the most important viral diseases of grapevine in the world. In this study, GLRaV-3 Ampelovirus was identi-fied from grapevines in Korea by analyzing viral coat protein size, nucleotide, and amino acid sequences. The molecular weight of viral coat protein from virus-infected in vitro plantlets was determined by western blot using a commercial GLRaV-3 polyclonal antibody. Western blot analysis showed a coat protein of about 43 kDa. RT-PCR product of about 942 bp which encoded the coat protein (CP) gene was amplified with specific primers. When the viruses existed at low titers in the host plant, the dsRNA had very specific template in RT- PCR amplification of fruit tree viruses. Especially, small-scale dsRNA extraction method was very reliable and rapid. Sequence analysis revealed that the CP of the GLRaV-3 Ko consisted of 942 bp nucleotide, which encoded 314 amino acid residues. The CP gene of GLRaV-3 Ko had 98.9% nucleotide sequence and 98.7% amino acid sequence identities with earlier reported GLRaV-3. This is the first report on molecular assay of GLRaV-3 Ampelovirus identified from Korea. The GLRaV-3 Ko CP clone would be very useful for breeding of virus resistant grapevines.

Characteristics of Tobacco Mosaic Virus Isolated from Wasabi (Eutrema wasabi) in Korea

  • Kim, Hyung-Moo;Lee, Kui-Jae
    • The Plant Pathology Journal
    • /
    • v.15 no.4
    • /
    • pp.247-250
    • /
    • 1999
  • Wasabies showing mosaic symptoms were collected and extracted for virus purification. Tobacco mosaic virus (TMV) was identified as causal agent by electron microscopy and nucleic acid and coat protein analyses. TMV strains were determined by enzyme-linked immunosorbent assay (ELISA). TMV was identified as W and C strain in wasabi. The results of host reaction indicated that this virus induced local lesions on Nicotiana tabacum cv. Bright Yellow and N. glutinosa, leaf spots on Chenopodium amaranticolor and mosaic symptoms on wasabi. Rot shape virus particles were observed and was about 300 nm in length. About 6.5 kb single RNA molecule was observed from extracted viral RNA sample and 26 KDa coat protein was detected in denatured acrylamide gel. Infection ratio of TMV was 8% for the first cultivation year, but was 22% for the second year when TMV-W antiserum was used. The results of this experiment showed that infection ratios of both TMV-W and TMV-C strains were higher compared to that of TMV-P strain.

  • PDF

Responses to Infection of Tobacco Mosaic Virus Pepper Strain (TMV-P) in Transgenic Tobacco Plants Expressing the TMV-P Coat Protein or Its Antisense RNA (담배 모자이크 바이러스 고추계통(TMV-P)의 외피단백질 유전자를 도입한 형질전환 담배의 TMV-P에 대한 반응)

  • 최장경;홍은주;이재열;장무웅
    • Korean Journal Plant Pathology
    • /
    • v.11 no.4
    • /
    • pp.374-379
    • /
    • 1995
  • The cDNA of tobacco mosaic virus-pepper strain (TMV-P) coat protein (CP) genes were introduced into tobacco plants (Nicotiana tabacum cv. Samsun nn) using a binary Ti plasmid vector of Agrobacterium tumefaciens. these cDNAs introduced into tobacco plants were detected by polymerase chain reaction. Symptom development was distinctly suppressed in the transgenic plant introduced buy sense CP cDNA when the plant was inoculated with TMV-P, while in transgenic tobacco plants of antisense CP gene, symptom development was not suppressed as in non-transgenic plants. TMV-P concentration in the sense CP transgenic tobacco plant was decreased to 1/14 of the concentration in non-transgenic plants. Expression of the kanamycin resistance gene of these transgenic plants could be detected in the progeny.

  • PDF

Action of Ozone on Bacterial Virus f2 (세균성 Virus f2에 대한 Ozone의 불활성작용)

  • 김치경
    • Korean Journal of Microbiology
    • /
    • v.18 no.3
    • /
    • pp.123-132
    • /
    • 1980
  • Bacterial virus f2 and its RNA were examined to elucidate the mode of ozone utilizing sucrose density gradient analysis and electtron microscopic techniques. the inactivation kinetics of the virus f2 by ozonation showed that the viruses were inactivated during the first 5 sec of the reaction and were further inactivated at a slower rate during the next 10 min at 0.09 and 0.8mg/l ozone concentrations. The virus coat was broken by ozonation into many pieces of protein subunits and the adsorption of the viruses to the host pili was inversely related to the extent of the breakage of the virus. The viral RNA was released from the virus particles during ozone, but ozone inactivation of the RNA enclosed in the protein coat could not ruled out the possibility that the RNA was secondarily sheared by a reaction with the broken coat protein.

  • PDF