• Title/Summary/Keyword: coastal sea

Search Result 3,161, Processing Time 0.034 seconds

Effect of climate change and sea level rise on taking water of South Thai Binhirrigation system in Vietnam

  • Nguyen, Thu Hien;Nguyen, Canh Thai
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.222-222
    • /
    • 2015
  • Vietnam is one of the most vulnarable countries affected by climate change and sea level rise. One of the consequences of climate change and sea level rise is the increase of salinity intrusion into the rivers which is challenging to irrigation systems in coastal areas. This indicates the necessary to study the ability of taking water through sluice gates of irrigation systems in coastal zones, especially in the dry season with the effects of climate change and sea level rise in the future. In this paper, Nam Thai Binh irrigation system is selected as a case study. The irrigation system is one of 22 biggest irrigation systems of the Red River delta in Vietnam located in coastal region. The computed duration is selected in dry season to irrigate for Winter-Spring crops. The irrigation water for the study area is taken from different sluice gates along the Red River and the Tra Ly River. In this paper, MIKE-11 model was applied to assess the ability of taking water for irrigation of the study area in current situation and in the context of climate change and sea level rise senario in 2050 (under the medium emissions scenario (B2) published by the Ministry of Natural Resources and Environment of Vietnam published in 2012) with different condition of water availability. The operation of the gates depends on the water levels and sanility conditions. The sanility and water level at different water intake gates of Nam Thai Binh irrigation system were simulated with different senarios with and without climate change and sea level rise. The result shows that, under climate change and sea water level rise, some gates can take more water but some can not take water because of salinity excess and the total water taking from the different gates along the rivers decrease while the water demand is increase. The study indicates the necessary to study quantitatively some recommended solutions in the study area particularly and in coastal region generally in Vietnam to ensure water demand for irrigation and other purposes in the context of climate change and sea level rise in the future.

  • PDF

The Analysis of High Chlorophyll-a Concentration Patch in the North Marine Areas of East China Sea (동중국해 북부 해역의 엽록소 고농도 덩어리 분석)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.3
    • /
    • pp.220-226
    • /
    • 2014
  • This study investigated temporal-spatial and variations in Geostationary Ocean Color Imager (GOCI) products of parameters total suspended solids (TSS) and chlorophyll-a in the North Marine Areas of East China Sea.GOCI data were collected daily from February 2012 to December 2012. The higher chlorophyll-a values were observed during the investigation period. The relatively large increase in TSS and chlorophyll-a at the sampling stations coupled with typhoon events during the summer rainy period. The abnormal chlorophyll-a concentration was mainly driven by meteorological factors such as typhoon and rainfall in the coastal areas of Jeju and the North Marine Areas of East China Sea. The abnormal high chlorophyll-a concentration at the majority of the coastal stations indicate eutrophication of coastal waters, especially Red tide. The events such as eutrophication and abnormal high chlorophyll-a concentration may potentially influence outbreak of Red Tide, detected with GOCI parameters.

Strategic Environmental Assessment for the Master Plan of Tonkin Gulf Coastal Economic Belt Development: Lesson Learnt

  • Le, Trinh
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.6
    • /
    • pp.419-427
    • /
    • 2009
  • Methodology and application of Strategic Environmental Assessment (SEA) for policies, plans, and programs are still new approach in Vietnam. With a support from Vietnam-Swedish Project (SEMLA) and Ministry of Natural Resources and Environment (MONRE), SEA for the Tonkin Gulf Coastal Economic Belt Development Plan was conducted in 2008. Lessons obtained from this SEA may contribute to improving methods and practicing SEAs for regional development. The main lessons summarized in this paper are: (i) close cooperation between the planning and environmental teams from the beginning phase of a master plan; (ii) SEA should focus not only on impacts to the natural environment but also on main issues of socio-economic aspects; (iii) approaches and methods used in SEA should be appropriate to properly predict the impacts at regional-levels and cumulative impacts; (iv) a good SEA study may be achieved when detailed data on the environment and socio-economy of the study area are available and have active engagement of stakeholders, including project affected sectors, ecologists, planners, policy makers, etc. This paper is useful for whom, those work in SEA in regional development.

Warming Trend of Coastal Waters of Korea during Recent 60 Years (1936-1995)

  • Kang Yong Q.
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.3_4
    • /
    • pp.173-179
    • /
    • 2000
  • Recent changes in the coastal sea surface temperatures (SST) in Korea are studied by time series analysis of daily SST data during the last 60 years (1936-1995) at 18 coastal observation stations of the National Fisheries Research and Development Institute. The climate of coastal SST in Korea are rapidly changing in recent years. General trends of coast SST changes in Korea are as follows. The annual averages of SST are increasing. The annual ranges of SST variation are decreasing. The winter SST are increasing while the summer SST have a decreasing tendency. Climatic changes in coastal SST in recent 30 years (1965-1995) are more pronounced than those in the last 60 years (1936-1995). The observed trend of coast SST implies that the climate in Korea shows a tendency to shift from temperate zone to subtropical zone.

  • PDF

Mitigation in Saemangeum Bay

  • Shin, Moon-Seup;Tetsuo Yanagi;Hong, Sung-Kun
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.139-140
    • /
    • 1995
  • The reclamation area of Saemangeum(Kunsan) located between 126。10´E - 126。50´ E and 35。35´N - 36。05´N at the western coast of Korea. The construction of the 33km sea dike is building in the Saemangeum area. When the construction of the sea dike in the coastal region takes plase, there exists, a certain amount of soil which is diffused by the tidal current. (omitted)

  • PDF

Reproduction and population dynamics of Acetes chinensis (Decapoda: Sergestidae) on the south-western coastal waters of Korea, Yellow Sea

  • Oh, Chul-Woong;Jeong, In-Ju;Ma, Chae-Woo
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2002.10a
    • /
    • pp.220-221
    • /
    • 2002
  • The planktonic shrimp, Acetes chinensis Hansen, 1919 inhabits the coastal areas of the Info-West Pacific, Korea, China, Taiwan, and Japan and is most abundant along the coastal areas of Yellow Sea. Several studies have locally examined aspects of reproductive biology of the species such as reproductive cycle, spawning, maturity, breeding pattern and fecundity. (omitted)

  • PDF

Assessing Habitat Quality and Risk of Coastal Areasin Busan (부산 연안역의 서식지 질 및 위험도 평가)

  • Jeong, Sehwa;Sung, Kijune
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.2
    • /
    • pp.95-105
    • /
    • 2022
  • Busan, where the coastal ecosystem health is deteriorating due to high development pressure and intensity of use, needs ecosystem management that considers humans and the natural environment together for sustainable use and ecosystem preservation of the coastal areas. In this study, the InVEST model was applied to assess the habitat status of the coastal land and coastal sea to manage the ecosystem based on habitats. As a result of the assessment of the coastal land, the habitat quality of Gadeok-do, Igidae, and Sinseondae, Gijang-gun are high, and Seo-gu, Jung-gu, Dong-gu, and Suyeong-gu are low. In the case of the coastal sea, the habitat risk of the Nakdong river estuary is low, and some areas of Yeongdo-gu, Saha-gu, Gangseo-gu are high. Therefore, for the sustainable use and preservation of coastal ecosystems, it is necessary to prepare ecosystem-based management measures to improve damaged habitats and reduce threats. In addition, the impact on coastal seas should be fully considered when planning coastal land development. The results of the InVEST habitat quality model in coastal land show similar tendencies to the biotope and environmental conservation value assessment map. The results of the habitat risk assessment in the coastal sea are expected to be utilized to identify habitats in the coastal sea and management of threat factors.

Sea-level Change and Coastal Erosion (해수면 변화와 해안 침식)

  • Jeon, Dong-Chull
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.4
    • /
    • pp.289-304
    • /
    • 1995
  • Time series of the relative sea levels at the selected tide-gauge stations in the North Pacific and historical aerial photographs in the Hawaiian Islands are analyzed. Long-term rising trend of sea level ranges from +1 to +5 mm/yr at most of the stations, which is primarily due to global warming and tectonic motion of the plates. The annual and interannual fluctuations of sea level result from the thermal expansion/contraction of sea-surface layer due to the annual change of the solar radiation and possibly from a coupled ocean-atmosphere phenomenon associated with an ENSO event, respectively. Sea-level changes in three different time-scales (linear trend. annual oscillation, and interannual fluctuation) and their quantitative contribution to the shoreline changes as a result of long-term cross-shore sediment transport arc hypothesized.

  • PDF

A Model-generated Circulation in the Yellow Sea and the East China Sea: I. Depth-mean Flow Fields

  • Jung, Kyung-Tae;Kang, Hyoun-Woo;So, Jae-Kwi;Lee, Ho-Jin
    • Ocean and Polar Research
    • /
    • v.23 no.3
    • /
    • pp.223-242
    • /
    • 2001
  • This paper presents the depth-mean monthly variation in the circulation of the Yellow Sea and the East China Sea computed using a robust diagnostic model. The mixed three-dimensional finite-difference Galerkin function model developed by Lee et at. (2000, 2001) has been extended to take into account baroclinic effects and then used to calculate the depth-mean flow fields as part of the results. In addition to M2 tide and oceanic flows previously considered, the model has been driven by the monthly mean wind stresses from Na and Seo (1998), the density gradient calculated based on by GDEM data set released by US Navy. Model results are very encouraging in that many of observed features including Jeju Cyclonic Gyre and frontal eddies along the shelfside of the Kuroshio main stream and west of Kyushu, are satisfactorily reproduced and are expected to be of value in interpreting observations in various oceanograhic disciplines.

  • PDF

Method of Integrating Landsat-5 and Landsat-7 Data to Retrieve Sea Surface Temperature in Coastal Waters on the Basis of Local Empirical Algorithm

  • Xing, Qianguo;Chen, Chu-Qun;Shi, Ping
    • Ocean Science Journal
    • /
    • v.41 no.2
    • /
    • pp.97-104
    • /
    • 2006
  • A useful radiance-converting method was developed to convert the Landsat-7 ETM+thermal-infrared (TIR) band's radiance ($L_{{\lambda},L7/ETM+}$) to that of Landsat-5 TM TIR ($L_{{\lambda},L5/TM+})$ as: $L_{{\lambda},L5/TM}=0.9699{\times}L_{{\lambda},L7/ETM+}+0.1074\;(R^2=1)$. In addition, based on the radiance-converting equation and the linear relation between digital number (DN) and at-satellite radiance, a DN-converting equation can be established to convert DN value of the TIR band between Landsat-5 and Landsat-7. Via this method, it is easy to integrate Landsat-5 and Landsat-7 TIR data to retrieve the sea surface temperature (SST) in coastal waters on the basis of local empirical algorithms in which the radiance or DN of Lansat-5 and 7 TIR band is usually the only input independent variable. The method was employed in a local empirical algorithm in Daya Bay, China, to detect the thermal pollution of cooling water discharge from the Daya Bay nuclear power station (DNPS). This work demonstrates that radiance conversion is an effective approach to integration of Landsat-5 and Landsat-7 data in the process of a SST retrieval which is based on local empirical algorithms.