• 제목/요약/키워드: coastal current

검색결과 1,061건 처리시간 0.025초

반폐쇄하구에서의 유동 및 성충구조에 관한 시뮬레이션 (Numerical Simulation in relation with Coastal Current and Stratification of Water at the Semi-enclosed Estuary)

  • 이우철;이중우;박동진
    • 한국항해항만학회지
    • /
    • 제28권6호
    • /
    • pp.565-572
    • /
    • 2004
  • 전차륜느 연안역에서 큰 스케일에서의 물질수송에 대한 관점에서 보면 조류보다 더 중요한 역할을 한다. 이러한 잔차류의 주된 성분은 조석 잔차류이며, 취송류, 밀도류 등도 이 흐름을 변동시키는 중요한 인자들이다. 이러한 연안역의 흐름의 특성을 규명하기 위해서는 3차원 유동모델의 적용이 필수적이다. 본 연구는 하천으로부터 담수유입에 의한 연안수역의 성층화 구조를 다루는데 초점을 두었으며, 이를 위해 3차원 밀도류모델을 적용하여 울산만의 유동을 재현하고, 담수유입에 의한 성층화 구조를 규명하였다. 그 결과 울산만과 같이 담수유입이 존재하는 반폐쇄 하구에서는 표층에서는 만외로 유출하고, 저층에서는 만내로 유입하는 흐름이 발생하였다. 또한 만내방향으로의 바람이 존재하는 경우에는 표층에서는 만내로 유입하는 흐름이, 저층에서는 이에 대한 보상류로 만외로 유출하는 흐름이 발생하는 것을 알 수 있었다. 이러한 해수유동결과는 해양목장 조성을 위한 인공어초투하, 연안표사 제어를 위한 잠제건설, 해저산맥 조성 등으로 인한 연직방향으로의 용승현상에 대한 규명이나 심층수 활용을 위한 기초연구에 적용이 가능할 것으로 사료된다.

Experimental study on the effect of EC-TMD on the vibration control of plant structure of PSPPs

  • Zhong, Tengfei;Feng, Xin;Zhang, Yu;Zhou, Jing
    • Smart Structures and Systems
    • /
    • 제29권3호
    • /
    • pp.457-473
    • /
    • 2022
  • A high-frequency vibration control method is proposed in this paper for Pumped Storage Power Plants (PSPPs) using Eddy Current Tuned Mass Damper (EC-TMD), based on which a new type of EC-TMD device is designed. The eddy current damper parameters are optimized by numerical simulation. On this basis, physical simulation model tests are conducted to compare and study the effect of structural performance with and without damping, different control strategies, and different arrangement positions of TMD. The test results show that EC-TMD can effectively reduce the control effect under high-frequency vibration of the plant structure, and after the additional damping device forms EC-TMD, the energy dissipation is further realized due to the intervention of eddy current damping, and the control effect is subsequently improved. The Multi-Tuned Mass Damper (MTMD) control strategy broadens the tuning band to improve the robustness of the system, and the vibration advantage is more obvious. Also, some suggestions are made for the placement of the dampers to promote their application.

수압식 파고계 자료 분석에서 유속의 영향 (The Significance of Current-effect on Analysis of Wave Data Obtained from a Subsurface Pressure Gauge)

  • 이동영;오상호
    • Ocean and Polar Research
    • /
    • 제31권4호
    • /
    • pp.389-399
    • /
    • 2009
  • Subsurface pressure gauge has many advantages in measuring a wide range of wave spectra in coastal waters from wind waves to long waves. However, a shortcoming of the gauge is related to the difficulties in recovering surface wave spectra from subsurface pressure records. In this study, the effect of current on the pressure transfer function of the pressure gauge, and hence on the surface wave energy spectrum, was investigated by analyzing the subsurface pressure data based on the linear wave theory. For this purpose, laboratory experiments were carried out in a wave-current flume. Subsurface pressure records, as well as the surface elevation data, were obtained simultaneously under different wave and current conditions. Pressure transfer functions were obtained and compared with those estimated from the linear wave theory, both with and without inclusion of the current-effect. It was established that wave spectra obtained from subsurface pressure gauge were in closer agreement with those from surface wave gauge when current-effect on the pressure transfer function was taken into consideration for analysis.

연안류에 대한 2D-H 사면구조에 기초한 수치모델링 (2-DH Quadtree based Modelling of Longshore Current)

  • 박구용
    • 한국해안해양공학회지
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 2001
  • 파랑으로 인해 발생되는 흐름은 연안에서 질량수송의 일련의 과정을 야기시키므로 연안유역의 관리에 파랑과 흐름의 상호작용에 대한 정확한 이해가 요구된다. 본 논문은 적응가능한 사면 구조 격자에 근간을 둔 파랑장과 흐름장을 혼합한 수치모델을 기술하였다. 사용한 모델은 쇄파, 천수, 굴절, 회절, 파랑과 흐름의 상호작용, 평균해면의 저하와 상승, 혼합 과정, 바닥 마찰 효과 그리고 해안선에 접한 운동 등을 해석할 수 있다. 주기와 수심으로 평균한 지배 방정식은 단계적으로 엇갈린 사면구조 격자에 적응 가능한 Adam-Bashforth 2차 유한 차분 기법으로 양해적으로 모델화 되었다. 본 모델로부터의 결과는 평면 해변에서 경사 입사파에 의해 발생된 연안류의 실험치와 타당한 일치를 보였다.

  • PDF

SEASONAL AND SUBINERTIAL VARIATIONS IN THE SOYA WARM CURRENT REVEALED BY HF OCEAN RADARS, COASTAL TIDE GAUGES, AND A BOTTOM-MOUNTED ADCP

  • Ebuchi, Naoto;Fukamachi, Yasushi;Ohshima, Kay I.;Wakatsuchi, Masaaki
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.340-343
    • /
    • 2008
  • The Soya Warm Current (SWC) is a coastal boundary current, which flows along the coast of Hokkaido in the Sea of Okhotsk. Seasonal and subinertial variations in the SWC are investigated using data obtained by high-frequency (HF) ocean radars, coastal tide gauges, and a bottom-mounted acoustic Doppler current profiler (ADCP). The HF radars clearly capture the seasonal variations in the surface current fields of the SWC. The velocity of the SWC reaches its maximum, approximately 1 m/s, in the summer, and becomes weaker in the winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 50 km. The almost same seasonal cycle was repeated in the period from August 2003 to March 2007. In addition to the annual variation, the SWC exhibits subinertial variations with a period from 10-15 days. The surface transport by the SWC shows a significant correlation with the sea level difference between the Sea of Japan and Sea of Okhotsk for both of the seasonal and subinertial variations, indicating that the SWC is driven by the sea level difference between the two seas. Generation mechanism of the subinertial variation is discussed using wind data from the European Centre for Medium-range Weather Forecasts (ECMWF) analyses. The subinertial variations in the SWC are significantly correlated with the meridional wind component over the region. The subinertial variations in the sea level difference and surface current delay from the meridional wind variations for one or two days. Continental shelf waves triggered by the meridional wind on the east coast of Sakhalin and west coast of Hokkaido are considered to be a possible generation mechanism for the subinertial variations in the SWC.

  • PDF

안목해안의 파랑과 흐름 분석 (Analysis of Wave and Current in Anmok Coastal Waters)

  • 임학수;김무종
    • 한국연안방재학회지
    • /
    • 제4권1호
    • /
    • pp.7-19
    • /
    • 2017
  • In this study, waves and currents observed by acoustic AWAC, VECTOR and Aquadopp Profiler in Anmok coastal waters were analysed to account for the variability of wave and current and to understand the mechanism of sediment transport generated by wave-induced current in the surf-zone. The monthly variation of wave and residual currents were analysed and processed with long-term observed AWAC data at station W1, located at the water depth of about 18m measured during from February 2015 to September 2016. Wave-induced currents were also analysed with intensive field measurements such as wave, current, suspended sediment, and bathymetry data observed at the surf-zone during in winter and summer. The statistical result of wave data shows that high waves coming from NNE and NE in winter (DEC-FEB) are dominant due to strong winds from NE. But in the other season waves coming from NE and ENE are prevalent due to the seasonal winds from E and SE. The residual currents with southeastern direction parallel to the shoreline are dominant throughout a year except in winter showing in opposite direction. The speed of ebb-dominant southeastern residual currents decreasing from surface to the bottom is strong in summer and fall but weak in winter and spring. By analysing wave-induced current, we found that cross-shore current were generated by swell waves mainly in winter with incoming wave direction about $45^{\circ}$ normal to the shoreline. Depending on the direction of incoming waves, longshore currents in the surf-zone were separated to southeastern and northwestern flows in winter and summer respectively. The variation of observed currents near crescentic bars in the surf-zone shows different direction of longshore and cross-shore currents depending on incoming waves implying to the reason of beach erosion generating the beach cusp and sandbar migration during high waves at Anmok.

Seasonal Changes of Water Properties and Current in the Northernmost Gulf of Aqaba, Red Sea

  • Manasrah, Riyad;Zibdah, Mohammad;Al-Ougaily, Firas;Yusuf, Najim;Al-Najjar, Tariq
    • Ocean Science Journal
    • /
    • 제42권2호
    • /
    • pp.103-116
    • /
    • 2007
  • Seasonal changes of tide signal(s), temperature, salinity and current were studied during the years 2004-2005 in the northernmost Gulf of Aqaba, which is under developmental activities, to obtain scientific bases for best management and sustainability. Spectrum analysis revealed permanent signals of tide measurements during all seasons, which represented semidiurnal and diurnal barotropic tides. The other signal periods of 8.13, 6.10-6.32, 4.16 and 1.02-1.05 h were not detected in all seasons, which were related to shallow water compound and overtides of principle solar and lunar constituent and to seiches generated in the Red Sea and the Gulf of Aqaba. Spatial and temporal distribution of temperature, salinity and density showed significant differences between months in the coastal and offshore region and no significant differences among the coastal sites, between the surface and bottom waters and between coastal and offshore waters. Therefore, the temporal and spatial variation of water properties in the northernmost Gulf of Aqaba behave similarly compared to other parts. The coastal current below 12 m depth was weak $(3-6\;cms^{-1})$ and fluctuated from east-northeastward to west-southwestward (parallel to the shoreline), which may be related to the effect of bottom topography and/or current density due to differential cooling between eastern and western parts in the study area, and wind-induced upwelling and downwelling in the eastern and western side, respectively. The prevailing northerly winds and stratification conditions during summer were the main causes of the southward current at 6 and 12 m depths with average speed of 28 and $12cms^{-1}$ respectively.

수치지도를 이용한 연안재해지도 작성 방안 (The Methods of Coastal Disaster Mapping Using Digital Map)

  • 정종철
    • 환경영향평가
    • /
    • 제16권5호
    • /
    • pp.373-379
    • /
    • 2007
  • Natural hazards such as typhoon, flood, landslide affect both coastal and inland areas more often according to increasement of severe and unusual weather. To provide adequate coastal disaster mitigation strategies, coastal disaster prevention system using GIS is very useful. Application methods of digital map on this issue was discussed in this study. For developing of coastal disaster prevention system, the data structures related to disaster monitoring is needed to be revised for interdisciplinary framework. To improve the current coastal disaster mapping methods, GIS based new model for coastal disaster mapping was suggested. In this study, coastal GIS showed the attribute data and structures of coastal disaster mapping.

The Movements Of The Waters Off The South Coast Of Korea

  • Lim, Du Byung
    • 한국해양학회지
    • /
    • 제11권2호
    • /
    • pp.77-88
    • /
    • 1976
  • The water movements in the south sea of Korea are deduced from the distributions of water properties. In summer the flow path of the Tsushima Current is deflected off from the Korean coast; between the coast and the current there exist eddies. Cyclonic eddies are particularly dominant in the southeastern area of Sorido Is. In winter, the sunken coastal water flows out along the bottom toward the southeast, and compensation is made at the surface by the coastward intrusion of off-shore waters. The so-called coastal counter- current of the area seems to be a cyclonic eddy which prevails in summer and autumn.

  • PDF

Numerical experiments on the Tsushima Warm Current

  • Nam, Soo-Yong;Suk, Moon-Suk;Chang, Kyung-Il;Seung, Young-Ho
    • 한국해안해양공학회:학술대회논문집
    • /
    • 한국해안해양공학회 1995년도 정기학술강연회 발표논문 초록집
    • /
    • pp.16-19
    • /
    • 1995
  • Effects of the changes in bottom topography and non-linearity of the western boundary current on the separation position of the Tsushima Warm Current(TWC) are investigated using a primitive equation model in a simplified model domain which consists of a deep ocean, a continental shelf and a marginal sea(Fig. 1). (omitted)

  • PDF