Journal of Korean Society of
Coastal and Ocean Engineers
Vol. 13, No. 1, pp. 1~8, March 2001

2-DH Quadtree based Modelling of Longshore Current
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Abstract [_] Wave-induced currents drive nearshore transport processes, and hence an accurate understanding of
wave-current interaction is required for proper management of coastal zone. This paper presents details of an
adaptive quadtree grid based numerical model of the coupled wave climate and depth-averaged current ficld. The
model accounts for wave breaking, shoaling, refraction, diffraction, wave-current interaction, set-up and set-
down, mixing processes, bottorn friction effects, and movement of land-water interface at the shoreline. The
wave period- and depth-averaged goveming equations are discretized explicitly by means of an Adams-
Bashforth second-order finite difference technique on adaptive hierarchical staggered quadtree grids. Results
from the numerical model are in reasonable agreement with the laboratory data of longshore current generated

by oblique waves on a plane beach (Visser 1980, 1991).
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1. INTRODUCTION

Theoretical models of nearshore hydrodynamics are
increasingly used by coastal engineers and scientists to
simulate wave climate and induced currents, that in turn
affects and transport and effluent dispersion. Much
research effort has been applied over the past 25 years 1o
the numerical meodeling of nearshore wave-current
interaction over relatively large coastal domains using
depth- and wave period-averaged mathematical formulations
of the mass, momentuin, wave energy and wave number
conservation relations. Examples include the models
developed by Birkemeier et «l. (1976), Ebersole and

Dalrymple (1980) and Yoo and O'Connor (1986). Aimost
all such numerical solvers are based on a structured grid
system comprising either fixed rectangular grids or
uniform curvilinear boundary-fitted grids. But it is not
computationally efficient for the grid to be of uniformly
high resolution throughout the entire numerical domain.
Un-structured advancing front or Voronoi grids have been
used for approximating complicated geometries and can
be readily adapted. However, the computations can be
expensive because the nodal index system is extremely
complicated, and nodal reordering may be required to
make the solution matrix less sparse.

Herein, adaptive hierarchical grids based on quadtrees
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are applied to the modeling of nearshore hydrodynamics.
Quadtree grids maintain straightfor-ward nodal connectivity
through the tree structure, even though the grids may be
highly non-uniform, and being based on recursive spatial
decomposition. These are robust, automatic and efficient
o generate quadtree mesh system (see Yiu er af. 1996).
This paper describes a period- and depth-averaged 2DH
numerical model of wave-current interaction based on
adaptive quadiree grids, where spatial discretization is
formed by finite differences. An explicit Adams-Bashforth
second-order scheme is used for time integration. Grid
adaptation is achieved using seeding points according to

local current gradient criteria.

2. QUADTREE GRID GENERATION

Quadtree techniques have been applied to a great
variety of engineering problems since they were first used
in image processing by Samet (1982). From a numerical
modeling point of view, quadtree grids are generally
cheaper and easier to adapt to very complicated domains
than either curvilinear grids or unstructured meshes. Yiu
et al. (1996) and Greaves and Borthwick (1999) describe
typical methodologies for creating quadtree grids. The
essence of quadtree grid generation is as follows. The
domain of interest is normalized to fit within a unit
square. The square is initially subdivided into four
quadrants. Each cell is then subdivided into four smaller
cells of equal sizes, and this process is recursively
repeated according to criterla such as the presence of
boundary seeding points in a cell, or the magnitude of
representative physical variables (e.g. the gradients of
depth-averaged current velocities).

After the first stage of grid generation, the resulting grid
often contains adjacent cells of different sizes with
hanging nodes at the interface edges. A hanging node
occurs where the vertex of one cell coincides with an edge
of a neighbor cell and adjacent cells are more than one
level apart in the quadtree. It should be noted that care has
to be taken to ensure that conservation requirements are
not violated when applying numerical approximations to
the governing partial differential equations at hanging
nodes.

For any arbitrary cell in the quadtree grid, its neighbor
cells can be identified by examining the branching

structure of the quadtree system and determining the
relative cell paths up the tree to the root cell (ie. unit
square). A linked list method 1s used herein due to its use
of memory pointers for efficient data accessing (Yiu et al.
1996). Each link has pointers from the object cell to its
parent cell and its subdivided child cells. Hence every cell
can be identified by systematically searching the quadtree
in the tree path. The concept of Nearest Common Ancestor
(NCA) is used to find the neighbor of any given object
cell. NCA is the smallest branching cell that is shared by
the object cell and the neighbor under consideration.
Further details of the cell numbering system and neighbor
finding algorithms used here are given by Yiu et al. (1996)
and Park (1999).

3. GOVERNING EQUATIONS
The depth- and wave period-averaged wave energy.

wave conservation, mass and momentum conservation
governing equations are after Yoo and O'Connor (1986) as

follows :
%uiw)_ (n)
aaU Ufaa_g pd%*g% T“})dr ai(l?}ij] (()2)
SovicorFasBoniigh -0
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where {, j=1, 2 are in tensor notation and correspond to
x- and y-components, K is a component of the local wave
number vector, U/ is the current velocity component, S; is
the depth variation factor, a is the wave amplitude, 4 is the
depth, Cg is the group celerity of the waves, ¢ is time and
X is a cartesian spatial coordinate, 1 is the period-averaged
surface elevation, g is the acceleration due to gravity, . is
surface wind stress, 7, is bed friction stress and & is the
eddy mixing coefficient. The friction coefficient C* is
determined using Bijker's (1966) empirical formula.
Thomton's (1970) algebraic formula is used herein to
estimate £ Wave breaking is treated using empirical
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criteria, such as the US-CERC (1984) formula. The

radiation stress tensor may be written
_1 Kf'f_(j i 2
S, = 2[(1 o)1+ G+ G&,](nga ) )

in which §1is the diffraction factor, G = 2kd/sinh 2kd, & is
the Kronecker delta, & is the wave number, and p is the

water density.

4. NUMERICAL MODEL

The quadtree grid can have up to 49 possible cell
configurations (as shown by Park, 1999), some of which
are related through reflection or rotation. Spatial discreti-
zation was carried out on a simple uniform grid template
by linear interpolation where necessary, according to the
local cell configuration.

The second-order accurate Adams-Bashforth time-

stepping algorithin is used, such that
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where ¢=FE, K, K, 1, Ui and U; depending on the
equation being solved. The superscript # is a time index,
so that r = nAt, Note that Ar is the time step. The subscript
P indicates that (6) is cell-centred for (1) and (4), the east
face for x-direction of (2) and (3} and the north face for y-
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Fig. 1. Variables on staggered uniformed quadtree grid.

direction of (2) and (3). The variables on uniformed mesh
is shown in the Fig. 1.

For example, x-direction momentum equation is (see
Fig. 2)
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Fig. 2. Discretized x-direction current and wave number on
uniform quadtree template.
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Fig. 3. Discretized y-direction current and wave number on
uniform quadtree template.

From the linear interpolation (other governing
equations with each cell configuration are followed under
the same procedures, details are given in Park (1999)),

Ug,= (Uc+ U2, U= (Uw + Ug)2,

U= (Un+ U2, Us.= (Us+ Uc)2,

Uc.= Ue, Unwe= Uy Uee, = Ug, Uss, = Us, U= U,
Ne= Ne Mw. = Te, Vo= (Ve+ Vi)/2,

de.= (de+ deV2, Sae.= Sue Sowe = Suc,

St = (Sgw + Sue¥2, Sos= (Sus+ Sqe)2,

Tuxts = (fuac + Tuxif2, Toac = (Tuc + Tl 2,

and &c = (& + &e02, Ec. = (Ec+ &£)/2 (10

With reference to the uniform quadtree grid configuration
in Fig. 3, the quadiree finite difference form of the y-
direction momentum equation is
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From the linear interpolation,
Ve = (Ve+ Ve, Vi = (Vw+ V)12,
VN.= (VN+ VC)JQ, V5,= (Vs+ Vc)/z, Vc.= Vc,
Vi = Vig Veeo= Vi, Vo= Vi, Ve = Vi,
T = T Nse = Tlee U= (Un+ Un)f2,
dC- = (d(. + dN)’Q- Sny- = S)'yN; S,\j‘.‘h = Iy,
Soee= (Sow+ Spe¥2, Sgwe= (Son+ Sowll2,
TanCe = (Tuav + Tuac W2, Tovea = (Toav + Thac)/2,
and &c.= (Ga+ &2, Geo= (Gv+ &2 (14)

The Q-tree grid is firstly generated and each cell's local
configuration identified. Initially, U, V and 1 are set to
zero, and the wave parameters (P, @ and 4) are denived
from Snell's law. No-flow conditions are applied to the
offshore (inflow) boundary in the current field. Offshore
boundary values for the wave variables are determined
from aer=HJ2, Pc=Ke cosBe, and Qc=[(K+ Ky)/2]
sinf(@+ @)/2] where the non-subscripted variables are
determined at the boundary, and H, is the wave height in
deep water. At the onshore boundary, the no-flow
condition is imposed. Periodic conditions are applied at
lateral boundaries to simulate an infinitely long beach. A
simple moving shoreline boundary scheme suggested by
Birkemeier and Dalrymple (1976) is implemented in the
present model, although special flooding effect is not
considered. In practice, the time step is determined by trial
and error, and is smaller than the 2-I) Courant stability
criterion. The separation factor k is calculated either by a
Padé form explicit method, ignoring current effects (Hunt,
1979).

5. RESULTS

The present model has been used to evaluate the
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Fig, 4. Wave basin configuration of Vissers experimental set-up.

longshore cuwrent induced by waves propagating at a
plane beach, for comparison with Visser's (1980, 1991)
experimental measurements in a basin 34 m long, 16.6 m
wide and 0.68 m deep rectangular tank (see Fig. 4). Visser
obtained experimental data on wave-induced currents at
1:10 plane concrete beaches. At the wave generator, the
still water depth is 0.399 m.

The offshore wave conditions are height A, =0.071 m
and period T'=2.01 s with obligue wave angle of incidence
6,=31.6°. The plane beach slope is 0.101.

A uniform mesh is used, composed of 32X 32 cells (sce

Fig, 5. Fixed mesh for Visser plane beach,

Fig. 5). The numerical domain is 3.2 m in both the x- and
y- directions. A time step of 0.015 seconds is vsed for
numerical stability, which is much less than the Courant
limit. The minimum depth criterion is 0.01 m. To eliminate
seiching effects, the wave height is built up over 7, =10
seconds and wave-current is not interacted until T, = 10
seconds. A periodic lateral boundary condition and US-
CERC (1984) breaking criterion are applied.

Thornton's (1970) formula provides an estimate of the
eddy mixing coefficient as follows

& =My As U

where A, is the wave excursion length at sea bottom and
I/, is the maximum wave velocity at sea bottom and M7 is
a coefficient. A refined modelling system has already
been developed by Yoo and Kim {1994} for the accurate
estimation of eddy viscosity using K-/ turbulence closure.
But in this study major interest is focused on the application
of quadtree system, and relatively simple approach of
Thornton formula was adopted for the estimation of eddy
viscosity. Until 1 = 20 s, the dimensionless constant, My, is
1.0, and then it is linearly decreased to 0.12 from =20 to
t = 30 s, held constant at 0.08 until = 40 s, and finally set
to 0.05. The bed roughness height R; is set to (.01 m until
t =20 s, and then linearly decreased to 0.0005 m at r = 40
s, and this value used thereafter. Fig. 6 presents the

oblique wave-induced velocity vectors at 200 seconds.
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Fig. 6. Velocity vectors with cell 256's location marked plane
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Fig. 7. Eddy viscosity profiles and corresponding longshore
currents for different Afr values.

To determine a suitable value for eddy viscosity, Cases
A, B and C were considered with final values of Mr =
0.01, 0.05, 1.0. Fig. 7 shows the cross-shore profiles of
eddy viscosity and longshore current for Cases A and B,
along with Visser's (1980) experimental value of longshore
current velocity. Case A significantly overestim -ates the
longshore current while Case B gives a reasonable result
but Case C failed to give a solution due to numerical
instability. Therefore, Case B was chosen.

The time varation of surface elevation at Cell 256
reaches steady-state after =80 s (see Fig. 8). The

expenimental longshore currents are in good agreement,
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Fig. 8. Predicted mean water level variation as a function of

time.

Fig. 9. Adapted mesh for Visser's plane beach,

but shifted horizentally due mainly to the breaking
criterion and no implementation of flooding effect. As
Larsen and Kraus (1991) explained, the simulation could
be improved by considering the plunge point shoreward of
the wave beaking location (Komar, 1998). The numerical
maximum value of longshore current is 0.66 m/s whereas
the experimental result is 0.63 m/s.

The initial uniform mesh was adapted according to the
longshore current magnitude, so that cells were enriched
for V> 0.54 m/s at t = 150 5. The final converged mesh is
shown in Fig. 9. The computation reached steady-state
after r=154 s, with a very similar velocity profile (see
Fig. 1) to that obtained on the regular grid, This
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Fig. 10. Longshore current on the adapted mesh,

demonstrates that the present model is able t©o handle
adaptivity, and should be useful in applications involving

more complicated boundaries and localised features.

6. CONCLUSIONS

A 2DH numerical model has been developed for
predicting nearshore wave-current interaction based on
quadtree grids created according to boundary seeding
points, which are capable of being locally enriched or
coarsened. Grid adaptation criteria can be determined from
local flow, bed topography or boundary considerations.

A longshore current was simulated at a plane beach,
and the mode] predictions are compared with experimental
data from Visser (1980, 1991). The predictions are
convergent and achieve steady-state, with fully developed
longshore current pattern in close agreement with the
experimental data, except a horizontal shift due perhaps to
the breaking criteria used in the numerical scheme and no
implementation of flooding effects. Better agreement
would be obtained using a wave breaking criterion fitted
to the laboratory data. It could also be argued that the
wave amplitude cut-off should begin to be applied at the
plunge peint shoreward of the wave break location
{Komar, 1998).

Although it was relatively simple, the test case
illustrates that the adaptive quadtree grid approach has a
potential for evaluating refined surf-zone hydrodynamics
in complicated coastal geometries.
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