• Title/Summary/Keyword: coastal boundary current

Search Result 59, Processing Time 0.02 seconds

Coastal Current Along the Eastern Boundary of the Yellow Sea in Summer: Numerical Simulations (여름철 황해 동부 연안을 따라 흐르는 연안 경계류: 수치 모델 실험)

  • Kwon, Kyung-Man;Choi, Byoung-Ju;Lee, Sang-Ho;Cho, Yang-Ki;Jang, Chan-Joo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.155-168
    • /
    • 2011
  • Coastal boundary current flows along the eastern boundary of the Yellow Sea and its speed was about 0.l m/s during the summer 2007. In order to find major factors that affect the coastal boundary current in the eastern Yellow Sea, three-dimensional numerical model experiments were performed. The model simulation results were validated against hydrographic and current meter data in the eastern Yellow Sea. The eastern boundary current flows along the bottom front over the upper part of slopping bottom. Strength and position of the current were affected by tides, winds, local river discharge, and solar radiation. Tidal stirring and surface wind mixing were major factors that control the summertime boundary currents along the bottom front. Tidal stirring was essential to generate the bottom temperature front and boundary current. Wind mixing made the boundary current wider and augmented its north-ward transport. Buoyancy forcing from the freshwater input and solar radiation also affected the boundary current but their contributions were minor. Strong (weak) tidal mixing during spring (neap) tides made the northward transport larger (smaller) in the numerical simulations. But offshore position of the eastern boundary current's major axis was not apparently changed by the spring-neap cycle in the mid-eastern Yellow Sea due to strong summer stratification. The mean position of coastal boundary current varied due to variations in the level of wind mixing.

Issues on the Maritime Boundary Disputes in Korean Territorial Seas (지방자치단체간 해상경계분쟁의 실태 및 쟁점)

  • 장학봉
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.8 no.2
    • /
    • pp.45-52
    • /
    • 2002
  • Recently there have been growing disputes between neighboring local governments over jurisdictional rights or property rights of ocean resources in Korean coastal waters. The reasons for the disputes come mainly from the increasing interests by local governments that begin to see the oceans as the source of resources and wealth. The maritime dispute is more complicated and sticky than the inland ones, and requires not only socio-economical but political approach, therefore sometimes demanding a plenty of time and endeavor. Also coastal states that have suffered from maritime boundary problems have different issues under the different environment and historical background. For Korea, as the maritime boundary issue has very recently soared to the surface, though it was latent for the period as long as 20 years, we have just taken steps toward an institutional approach on it, seemingly more to go to reach an agreeable resolutions to the disputes. This paper highlighted the issues surrounding the maritime boundary on the sea surrounding Korean peninsular after addressing the current situation of the boundary disputes. It will help explore and assess the possible solutions to the boundary conflicts over the lateral boundary between local governments.

  • PDF

Changes in Dynamic Characteristics of Monopile-Type Offshore Structures According to Tidal Environments and Boundary Conditions (다양한 조류 환경 및 경계 조건에 따른 모노파일형 해상구조물의 동특성 변화 분석)

  • Jung, Byung-Jin;Park, Jong-Woong;Yi, Jin-Hak;Park, Jin-Soon
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.261-267
    • /
    • 2014
  • Because a change in the natural frequencies of a structure indicates structural health problems, monitoring the natural frequencies crucial. Long-term measurement for the Uldolmok tidal current power plant structure has shown that its natural frequencies fluctuate with a constant cycle twice a day. In this study, lab-scale tests to investigate the causes of these natural frequency fluctuations were carried out in a circulating water channel. Three independent variables in the tests that could affect the fluctuation of the natural frequencies were the water level, current velocity, and boundary condition between the specimen and the bottom of the circulating water channel. The experimental results were verified with numerical ones using ABAQUS. It was found that the fluctuation of the natural frequencies was governed by a decrease in stiffness due to the boundary condition much more than the effect of added mass. In addition, it was found that the natural frequency would decrease with an increase in the tidal current velocity because of its nonlinearity when the boundary condition was severely deteriorated due to damage.

Hydraulic Model Experiment on the Circulation in Sagami Bay, Japan (II) - Dependence of the Circulation Pattern on External and Internal Rossby Number in Baroclinic Rotating Model

  • Choo Hyo-Sang;Sugimoto Takasige
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.1
    • /
    • pp.5-20
    • /
    • 2002
  • To investigate the effect of mechanical parameters on the circulation and its fluctuation in Sagami Bay, baroclinic model experiments were carried out by use of a two-layer source-sink flow in a rotating tank. In the experiment, a simple coastal topography with flat bottom was reproduced. The results show that the path of the Through Flow, which corresponds to the branch current of the Kuroshio, depends on external Rossby number (Ro) and internal Rossby number $(Ro^*)$, and divided into two regimes. For $Ro^*\leq1.0$ in which Rossby internal radius of deformation of the Through Flow is smaller than the width of the approaching channel, the current flows along the Oshima Island as a coastal boundary density current separated from the western boundary of the channel. For $Ro^*>1.0$ it changes to a jet flow along the western boundary of the channel, separated from the coast of Oshima Island. The current is independent on both Ro and Ro* in the regime of $Ro^*>1.0,\;Ro\geq0.06$ and $Ro^*\leq1.0,\;Ro\geq0.06$. The pattern of the cyclonic circulation in the inner part of the bay is also determined by Ro and Ro*. In case of $Ro^*\leq1.0$, frontal eddies are formed in the northern boundary of the Through Flow. These frontal eddies intrude into the inner part along the eastern boundary of the bay providing vorticity to form and maintain the inner cyclonic circulation. For $Ro^*>1.0$, the wakes from the Izu peninsula are superposed intensifying the cyclonic circulation. The pattern of the cyclonic circulation is divided into three types; 1) weak cyclonic circulation and the inner anticyclonic circulation $(Ro<0.12)$. 2) cyclonic circulation in the bay $(0.12\leq Ro<0.25)$. 3) cyclonic circulation with strong boundary current $(RO\geq0.25)$.

Numerical experiments on the Tsushima Warm Current

  • Nam, Soo-Yong;Suk, Moon-Suk;Chang, Kyung-Il;Seung, Young-Ho
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.16-19
    • /
    • 1995
  • Effects of the changes in bottom topography and non-linearity of the western boundary current on the separation position of the Tsushima Warm Current(TWC) are investigated using a primitive equation model in a simplified model domain which consists of a deep ocean, a continental shelf and a marginal sea(Fig. 1). (omitted)

  • PDF

Two-Dimensional Finite Element Analysis for Tidal Flat Simulation (조간대 모의를 위한 2차원 유한요소해석)

  • 서승원;박원경
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.1
    • /
    • pp.103-113
    • /
    • 1996
  • Two-dimensional finite element hydrodynamic models for long wave simulation usually adopt fixed land boundary. However moving boundary treatment is strongly required in the simulation of tidal flats for west and south coast of Korea. In this study very efficient and realistic moving boundary treatment is applied by considering incident long wave surface slope. Developed STEP-CM (Superior Two-step Explicit Program for Coastal Modeling) ,shows numerically stable results in comparative study for idealized one-dimensional channel. Real application of the model is done for Chonsu Bay where tidal flats are distributed along the coast. Nonlinear tidal current and tidal flat effects are easily simulated in STEP-CM and resulting circulations are detected around headland of Wonsan Island.

  • PDF

Prediction of Tidal Changes due to the Development of Incheon Coastal Waters (인천해역 개발에 따른 조석변화 추정)

  • 정신택;소재귀;채장원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.266-274
    • /
    • 1994
  • Two-dimensional numerical analysis is performed for the simulation of tidal characteristics related to various development projects in Incheon coastal waters along the west coast of Korea. Field observation of tides and currents was made in order to provide the input boundary and validation data set to the numerical modelling. For the simulation of changes of tides and currents a depth-integrated two-dimensional shallow water model of Flather and Heaps (1975) has been used herein. Tidal model is set up with open boundary sea level from observed two major constituents, M$_2$ and S$_2$. Subsequently the established model is utilized to investigate the effect of two development projects in this region. It has been found that in spring tide the changes of tidal amplitude are small, however, those of tidal current are locally significant.

  • PDF

SEASONAL AND SUBINERTIAL VARIATIONS IN THE SOYA WARM CURRENT REVEALED BY HF OCEAN RADARS, COASTAL TIDE GAUGES, AND A BOTTOM-MOUNTED ADCP

  • Ebuchi, Naoto;Fukamachi, Yasushi;Ohshima, Kay I.;Wakatsuchi, Masaaki
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.340-343
    • /
    • 2008
  • The Soya Warm Current (SWC) is a coastal boundary current, which flows along the coast of Hokkaido in the Sea of Okhotsk. Seasonal and subinertial variations in the SWC are investigated using data obtained by high-frequency (HF) ocean radars, coastal tide gauges, and a bottom-mounted acoustic Doppler current profiler (ADCP). The HF radars clearly capture the seasonal variations in the surface current fields of the SWC. The velocity of the SWC reaches its maximum, approximately 1 m/s, in the summer, and becomes weaker in the winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 50 km. The almost same seasonal cycle was repeated in the period from August 2003 to March 2007. In addition to the annual variation, the SWC exhibits subinertial variations with a period from 10-15 days. The surface transport by the SWC shows a significant correlation with the sea level difference between the Sea of Japan and Sea of Okhotsk for both of the seasonal and subinertial variations, indicating that the SWC is driven by the sea level difference between the two seas. Generation mechanism of the subinertial variation is discussed using wind data from the European Centre for Medium-range Weather Forecasts (ECMWF) analyses. The subinertial variations in the SWC are significantly correlated with the meridional wind component over the region. The subinertial variations in the sea level difference and surface current delay from the meridional wind variations for one or two days. Continental shelf waves triggered by the meridional wind on the east coast of Sakhalin and west coast of Hokkaido are considered to be a possible generation mechanism for the subinertial variations in the SWC.

  • PDF

Numerical Modelling Of The Coastal Upwelling Near The Poleward Edge Of The Western Boundary Current

  • An, Hui Soo
    • 한국해양학회지
    • /
    • v.16 no.1
    • /
    • pp.12-23
    • /
    • 1981
  • A numerical experiment is made in order to clarify the mechanism of the upwelling phenomenon along the coast near the poleward edge of the western boundary current. The possibility of the upwelling is suggested from the analysis of the observational data in the east of Honshu, Japan, and in the south eastern coast of Korean Peninsula. This upwelling phenomenon is very deep and can be traced to the bottom layer. The upwelling phenomenon seems to be a general oceanic feature which characterizes the region along the west coast near the poleward edge of the western boundary current. This experiment is simulating the oceanic condition of the transition region between Kuroshio front and the Oyashio front in the east of Honshu, Japan. The possible explanations of the causes of the upwelling are as follows;In the interior of the modeled ocean the cold heavy water supplied from the north and the warm light water from the south make the north-south gradient of the pressure field and accelerate the eastward current to produce the h-orizontal divergence feld near the west coast. The divergence is compensated by the upwelling near the separation region. Another one is that the upwell-ed cold water strengthen constantly the pressure gradient which is balanced by the northward current and is weakened by the horizontal diffusion.

  • PDF

Depth contours appeared on SAR images by interactions between tidal current and bottom topography

  • Kim, Tae-Rim
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.692-694
    • /
    • 2006
  • X-SAR images taken on the coastal waters of Hwanghe province in Korea during SIR-C/X-SAR campaign in April and October 1994 are analysed. The SAR images show the peculiar signatures like nail marks, curved long string, and vortex streets patterns and they all seem to be produced by strong interactions between the topography in the coastal waters and tidal currents. The nail mark signatures are located at the same position of small scaled sand banks and the curved line patterns are almost identical to the outer boundary of large sand banks. Based on the tidal record, all the three images are taken at the almost same phase of tidal cycles, which are close to the low tide. It seems that bottom shapes are more strongly appeared on the SAR images when the tidal currents are slow. The front between two different current velocities caused by the flows along the steep boundaries of sandbanks is also the main factors imprinting the bottom features to the sea surface SAR images

  • PDF