• 제목/요약/키워드: coarse powder

검색결과 171건 처리시간 0.027초

전자빔 증착 열차폐 코팅용 란타늄-가돌리늄 지르코네이트(La2O3-Gd2O3-ZrO2계) 세라믹 잉곳의 제조공정에 따른 열충격 저항성 (Thermal Shock Resistance According to the Manufacturing Process of Lanthanum Gadolinium Zirconate Ceramic Igot for Thermal Barrier Coating by Electron Beam in the La2O3-Gd2O3-ZrO2 System)

  • 최선아;채정민;김성원;이성민;한윤수;김형태;장병국;오윤석
    • 한국표면공학회지
    • /
    • 제50권6호
    • /
    • pp.465-472
    • /
    • 2017
  • The ingot fabrication conditions related with the thermal shock bearing phase and microstructure have investigated for the rare earth zirconate ceramic material, lanthanum gadolinium zirconate, as a thermal barrier coating using electron beam evaporation method. The thermal shock resistance of the prepared ingot was evaluated by high energy electron beam irradiation. The rare earth zirconate ceramic powder was prepared by controlling the raw material powder composition of $La_2O_3$, $Gd_2O_3$ and $ZrO_2$ so as to have a composition of $(La_{0.3}Gd_{0.7})_2Zr_2O_7$ which was selected from the former study. Ingot samples were prepared under two conditions. The first condition is prepared by sintering the prepared powder mixture to form an ingot. The second condition is prepared by calcining the prepared powder mixture to form a composite phase and then sintering to form an ingot. X-ray diffraction(XRD) and Scanning Electron Microscope(SEM) were used to analyze phase forming behavior and microstructure of ingot samples. Nanoindentation method used to obtain elastic modulus and hardness of each ingot specimen. Also the stress distribution of ingot was simulated by using FEM method assuming the ingot surface was exposed to electron beam. As a results, in the case of an ingot having a network-shaped microstructure in which relatively coarse pores are included, it seems that the thermal shock resistance was higher than in the case of an ingot having a microstructure composed of relatively fine grains only or particles with the similar level size when the high energy electron beam irradiation.

$TiO_2$ 의 첨가가 Lead-Zinc-Borosilicate 봉착 유리에 미치는 영향 (Effect of $TiO_2$ in the Lead-Zinc-Borosilicate Solder Glass)

  • 채수철;김철영
    • 한국세라믹학회지
    • /
    • 제21권4호
    • /
    • pp.349-354
    • /
    • 1984
  • The purpose of present study is to find the structure crystallization mechanism and physical properties in $TiO_2$ containing lead zinc borosilicate glass system. The experiments such as differential thermal analysis infrared spectral analysis. X-ray diffraction analysis and thermal expansion measurements have been done. Differential thermal analysis of coarse and fine glass powder showed bulk nucleating mechanism for high $TiO_2$ containing glasses and surface nucleation mechanism for low $TiO_2$ containing glasses. The prepared glasses crystallized to crystalline mixture of PbO.2ZnO. $B_2O_3$ .4PbO.2ZnO.$5B_2O_3$and 2PbO.ZnO.$B_2O_3$ when heat-treated in the range of 480 and 51$0^{\circ}C$ and crystallized to PbTiO3 when heat-treated at $600^{\circ}C$. Obtained crystalline phase of $PbTiO_3$ in glass matrix strongly affects to thermal expansion coefficient and the value of crystallized glass varied 68.0 to $107.1{\times}10-7$/$^{\circ}C$ depending on the amount of $TiO_2$added. Infrared spectral analysis showed that [$BO_3$] triangle and [$BO_3$] tetrahedral units were coexisted in the glass with high content of PbO.

  • PDF

Al2O3 분산 Zn-Co-Cr 전기도금강판의 제조조건 및 내식성에 관한 연구 (A Study of Electroplating Conditions and Corrosion Resistance for Al2O3 Dispersed Zn-Co-Cr Electroplated Steel Sheets)

  • 김상범;서수정;박현순
    • 열처리공학회지
    • /
    • 제6권2호
    • /
    • pp.89-97
    • /
    • 1993
  • An improvement in corrosion resistance of various types of Zn-coated steel sheets is thought to be possible with the addition of fine oxide powder to the coating. In this study the corrosion resistance of the $Al_2O_3$ dispersed Zn-Co-Cr electroplated steel sheet has been investigated and the results were as follows : The corrosion resistance of $Al_2O_3$ dispersed Zn-Co-Cr electroplated steel sheets was improved by increasing the contents of Co and Cr ions, and also $Al_2O_3$ powders in the bath because of the increased amount of Co, Cr and $Al_2O_3$ in deposits. In the $Al_2O_3$ dispersed Zn-Co-Cr electroplated steels sheet, the structure of deposits was changed from fine microstructure as observed in high Co containing deposits to coarse microstructure as in high Cr and $Al_2O_3$ containing deposits. By cold rolling of the $Al_2O_3$ dispersed Zn-Co-Cr electroplated steel sheets to about 2 percent, thr corrosion resistance was improved further.

  • PDF

건식비중분리법에 의한 고품질순환잔골재생산시스템의 개요 및 성능평가 (Outline and Performance Evaluation of High Quality Recycled Fine Aggregate Manufacturing System Using Drying Gravity Separation Method)

  • 김무한;김규용;최경렬;이도헌;송하영;노경민
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2006년도 춘계학술논문 발표대회 제6권1호
    • /
    • pp.111-114
    • /
    • 2006
  • Recently, it is increased on the concern for the reuse of waste concrete because of the shortage of natural aggregate and the increase of waste concrete. And recycled coarse aggregate is used variously, but the existing wet method producted recycled fine aggregate has problem like the high price facilities, the long time progress of the work and the poor of recycled fine aggregate. The aim of this study is to investigate outline and performance evaluation of the drying specific gravity separation method to product high duality recycled fine aggregate. Finally, this study is shown investigate process flowing of drying separation type with gravity manufacture, producte system and function of detail devices. The performance of the method of drying specific gravity separation is certificated as the qualities of recycled fine aggregate satisfied the KS

  • PDF

Pressure-Temperature Diagram of Critical Condition for Disproportionation of Nd-Fe-B Alloy in Hydrogen

  • Kwon, H.W.;Kim, D.H.;Yu, J.H.
    • Journal of Magnetics
    • /
    • 제15권4호
    • /
    • pp.155-158
    • /
    • 2010
  • The HDDR (hydrogenation, disproportionation, desorption, and recombination) process can be used as an effective way of converting a no coercivity Nd-Fe-B ingot material, with a coarse $Nd_2Fe_{14}B$ grain structure, to a highly coercive one with a fine grain structure. Careful control of the HDDR process can lead to an anisotropic powder with good $Nd_2Fe_{14}B$ grain texture; the most critical step for inducing texture is disproportionation. The critical conditions (hydrogen pressure and temperature) for the disproportionation reaction of fully hydrogenated $Nd_{12.5}Fe_{81.1-(x+y)}B_{6.4}Ga_xNb_y$ (x = 0 or 0.3, y = 0 or 0.2) alloys, in different atmospheres of pure hydrogen and a mixed gas of hydrogen and argon, was investigated with TPA (thermopiezic analyser). From this, the hydrogen pressure-temperature diagram showing the critical conditions was established. The critical disproportionation temperature of the fully hydrogenated $Nd_{12.5}Fe_{81.1-(x+y)}B_{6.4}Ga_xNb_y$ alloys was slightly increased as the hydrogen pressure decreased in both pure hydrogen and mixed gas. The critical disproportionation temperature of the hydrogenated alloys was higher in the mixed gas than in pure hydrogen. Addition of Ga and Nb increased the critical disproportionation temperature of the fully hydrogenated Nd-Fe-B alloys.

3차원적층조형법으로 제조된 타이타늄 금속 다공체의 기공구조 및 기계적 특성에 관한 연구 (A Study on Pore Structure and Mechanical Properties of Porous Titanium Fabricated by Three-dimensional Layer Manufacturing Process)

  • 손병휘;홍재근;현용택;배석천;김승언
    • 대한금속재료학회지
    • /
    • 제50권2호
    • /
    • pp.100-106
    • /
    • 2012
  • This study was performed to fabricate porous titanium foam by three-dimensional layer manufacturing process, and to evaluate the porosities, compressive stress, Young's modulus and fracture pattern. Porous titanium foam was made of CP(Commercial Pure) titanium powder (${\leq}5{\mu}m$). Total porosities of titanium foam were in the range of 55-68%. Pore size distribution was $200-440{\mu}m$ for coarse pores, $50-100{\mu}m$ for intermediate pores and $5-10{\mu}m$ for fine pores. Compression elastic modulus and compression stress were decreased with increasing porosity. Young's modulus ranged from 1.04-5.62 GPa and maximum stress ranged from 20-241 MPa. Regarding the mechanical properties, 3D(Three Demensional) porous titanium fabricated layer manufacturing is a promising material for human bone replacement.

Investigating the Colour Difference of Old and New Blue Japanese Glass Pigments for Artistic Use

  • Chua, Lynn;Quan, Seah Zi;Yan, Gao;Yoo, Woo Sik
    • 보존과학회지
    • /
    • 제38권1호
    • /
    • pp.1-13
    • /
    • 2022
  • Colour consistency is an important consideration when selecting pigments used on works of art. In this study, we analyse the colour difference between two sets of synthetic blue glass pigments acquired at least 8 years apart from the same manufacturer in Japan. The old pigment set (unused, dry powder with four different grain sizes) appears faded compared to the new set. These pigments are made available for artistic use, commonly in Nihonga or Japanese paintings. Raman spectroscopy and SEM-EDS results characterize these pigments as cobalt aluminate spinels dissolved in leaded glaze, a special class of complex coloured inorganic pigments that is not well-understood in the field of conservation. Colour difference between the old and new pigments with four different grain sizes were quantified by analysing photomicrographs with image analysis software. Blue pigments with coarse and extremely fine grains showed significant colour change compared to pigments with medium and fine grain sizes. The high occurrence of crystallites in the finer grains give a final colour that is bluer and lighter. Possible causes for the colour difference including manufacturing methods and storage environment are discussed.

Predicting the compressive strength of SCC containing nano silica using surrogate machine learning algorithms

  • Neeraj Kumar Shukla;Aman Garg;Javed Bhutto;Mona Aggarwal;Mohamed Abbas;Hany S. Hussein;Rajesh Verma;T.M. Yunus Khan
    • Computers and Concrete
    • /
    • 제32권4호
    • /
    • pp.373-381
    • /
    • 2023
  • Fly ash, granulated blast furnace slag, marble waste powder, etc. are just some of the by-products of other sectors that the construction industry is looking to include into the many types of concrete they produce. This research seeks to use surrogate machine learning methods to forecast the compressive strength of self-compacting concrete. The surrogate models were developed using Gradient Boosting Machine (GBM), Support Vector Machine (SVM), Random Forest (RF), and Gaussian Process Regression (GPR) techniques. Compressive strength is used as the output variable, with nano silica content, cement content, coarse aggregate content, fine aggregate content, superplasticizer, curing duration, and water-binder ratio as input variables. Of the four models, GBM had the highest accuracy in determining the compressive strength of SCC. The concrete's compressive strength is worst predicted by GPR. Compressive strength of SCC with nano silica is found to be most affected by curing time and least by fine aggregate.

열저항 특성을 고려한 지중송전관로 되메움재의 최적화(II) (Optimization of the Backfill Materials for Underground Power Cables considering Thermal Resistivity Characteristics (II))

  • 김유성;조대성;박영준
    • 한국지반신소재학회논문집
    • /
    • 제10권4호
    • /
    • pp.123-130
    • /
    • 2011
  • 본연구의 선행연구에서는 주로 강모래를 포함한 각종 되메움재 후보군에 대하여 함수비, 건조단위중량, 입도분포 등의 차이에 따른 열저항 특성을 조사, 비교 분석하였다. 이 연구에서는 선행연구 결과를 토대로 하여 지중송전관로의 송전용량의 증대 및 열폭주(thermal runaway) 현상을 방지할 수 있는 새로운 되메움재의 개발에 주안점을 두었다. 연구를 위해 강모래, 재생모래, 쇄석, 석분과 같은 원재료에 플라이 애쉬(fly-ash), 슬래그(slag), 플록(floc)과 같은 입자가 작고 보습효과가 있는 재료를 혼합하여 혼합비와 함수상태에 따룬 열저항률의 변화를 측정, 분석하였다. 연구결과 단일재료만으로는 되메움재로의 사용이 어려울 것으로 판단되나, 쇄석의 입도분포 개선을 위해 평균입경이 작은 재생모래와 석분, 술래그 및 플록을 혼합한 결과, 최적함수비에서 $50^{\circ}C$-cm/Watt이하의 열저항률을 얻을 수 있고, 최적함수비 상태 후의 건조시에도 열저항률의 증가가 일어나지 않고 있어, 어느 정도 되메움재로서의 최적화에 근접한 것으로 판단된다.

Al첨가에 의한 무수축 Mullite-$ZrO_2$ 요업체의 제조에 관한 연구 (A Study on the Fabrication of Shrinkage-Free Mullite--$ZrO_2$ Ceramics with Al-Additives)

  • 김정욱;김일수
    • 한국재료학회지
    • /
    • 제5권7호
    • /
    • pp.888-896
    • /
    • 1995
  • Al 금속분말을 zircon sand (ZrSiO$_4$)와 A1$_2$O$_3$혼합체에 첨가하여 반응소결시킴으로써 무수축 Mullite-ZrO$_2$, 요업체를 얻고자 하였다. 반응식, 3(Al+Al$_2$O$_3$)+2ZrSiO$_4$$\longrightarrow$3A1$_2$O$_3$ .2SiO$_2$+2ZrO$_2$에 의하여 ZrO$_2$-강화 Mullite 요업체를 제조하였다. Al 분말은 A1$_2$O$_3$에 대해 0-30 무게 퍼센트까지 대체하였다. 평량한 분말을 볼밀하여 혼합 분쇄한 후, 정수압 성형하여 시편을 제조하고, 온도범위 1450-1$600^{\circ}C$에서 3시간 반응소결시켰다. Al의 충분한 산화를 위해, 한편으로는 125$0^{\circ}C$에서 5시간동안 열처리를 거친후 소성온도로 올리기도 했다. Al을 첨가함으로서 반응은 촉진되었으며, 소성수축도 산화한 Al의 부피팽창에 의해 상쇄되어, 무수축요업체 제조의 가능성을 보였다. 박편모양을 한 비교적 큰 Al분말이 잘 분쇄되지 않음으로 해서, Al이 자리했던 곳에 큰 기공을 남겼다.

  • PDF