• Title/Summary/Keyword: coarse powder

Search Result 171, Processing Time 0.029 seconds

Sintering Behavior of Bimodal Size-Distributed Alumina Powder Mixtures (이중분포를 갖는 알루미나 혼합분체의 소결겨동)

  • 이정아;김정주
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.718-724
    • /
    • 1999
  • Densification and grain growth behavior of bimodal size distributed alumina powder mixtures were investigated as a function of amount of coarse alumina powder. The specimens which contained coarse alumina powder for 60to 80wt% showed the highest green density. The amount of shrinkage of sintered specimen lineraly decreased with the increase of coarse alumina powder up to the content that showed the highest green density and then further addition of coarse alumina powder led to drastic decrease of shrinkage of specimen. Especially crack-like void were concurrently revealed in the sintered body with addition of coarse alumina powder above 60wt% When the sintering temperature increased up to 1650$^{\circ}C$ the amount of shrinkage of specimen linearly decreased and the grain growth were also retarded with increase of coarse lauminia powder.

  • PDF

Effect of Powder Size on the Rheological Characteristics of Sm-Co Type Compound for Powder Injection Molding (사출성형용 컴파운드의 유연학적 특성에 미치는 SH-CO 계 분말의 입도 영향)

  • 정우상;김윤배;정원용
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.4
    • /
    • pp.157-162
    • /
    • 2001
  • Rheological characteristics of Sm-Co type plastic magnet compound for powder injection molding process were investigated with the variation of the magnetic powder size, their relative contents and volume fraction using the mixture of fine and coarse powder. Shear viscosity of Sm-Co type compound was decreased with increasing the size of coarse powder due to the increase of powder packing density. However, the smaller the average size of fine powder resulted in the higher viscosity of compound due to the increase of agglomeration force. In case of mechanically milled Sm-Co type powder, the viscosity of compound with the mixture of coarse powder of 125∼75 ㎛ and fine powder of average size of 4.9 ㎛ greatly depends on their relative contents and shows a minimum value at the 60 % coarse powder fraction. This means that the compound shows a maximum packing density at the 60% coarse powder fraction. Compound viscosities satisfied well the rheological model with the volume fraction of magnetic powder, and maximum volume fraction of magnetic powder in Sm-Co type compound for powder injection molding was about 66%.

  • PDF

Attrition Milling and Reaction-Sintering of the Oxide-Metal Mixed Powders: I. Milling Behavior as the Powder Characteristics (산화물과 금속 복합 분말의 Attrition Milling 및 반응소결: I. 분말의 특성에 따른 분쇄 거동)

  • 황규홍;박정환;윤태경
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.337-345
    • /
    • 1994
  • The reaction-sintered alumina and zirconia-alumina ceramics having low firing shrinkage were prepared from the Al/Al2O3 or Al/ZrO2(Ca-PSZ) powder mixtures via the attrition milling. And in this milling process the effect of the characteristics of used powders was investigated. Attrition milling was much more effective in reducing the particle size of ceramic/metal mixed powders than ball milling. Powder mixtures of flake-type Al with coarse alumina was much more effectively comminuted by the attrition milling than the mixtures of globular-type Al with coarse alumina powders. And coarse alumina than fine alumina was much more beneficial in cutting and reducing the ductile Al particles. In the contrary to Al/Al2O3 powder mixtures, Al/ZrO2 powder mixtures was not effectively comminutd. But whether using the alumina ball media or attrition milled with Al2O3 powder rather than Al, the milling efficiency was much more increased.

  • PDF

Influence of the Improveal Grain Shape of Coarse Aggregates on Compactability of High Performance Concrete (굵은 골재 입형 개선이 고성능콘크리트의 충전특성에 미치는 영향)

  • 이승한;김희중;정용욱
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.103-111
    • /
    • 2000
  • The influence of the improvement of grain shape of the coarse aggregate to the unit powder content of concrete and the fine aggregate ratio for the increase of the flowability and segregation resistance of high performance concrete was examined. According to the experimental results, flowability and compacting of concrete presents best states in the S/a which has the smallest 패야 ratio. The coarse aggregate after improvement of grain shape, that has changed from the 0.68 of spherical rate of disk shape to 0.73, led fine aggregate ratio to be down 6% (i.e from 47% to 41%). The improvement of grain shape of the coarse aggregate also led the lowest unit powder content to be down 60kg/㎥ (ie from 530kg/㎥ to 470kg/㎥). And approximate 10% of unit water content has been reduced as unit powder content was down. However, the compressive strength after the improvement of grain shape of the coarse aggregate decreased to 5% due to decrease of adhesiveness of the aggregate and cement paste.

Mechanical Properties and Contact Damage of Silicon Nitrides Nitrides : II. Effect of Microstructure (질화규소의 기계적 성질 및 접촉 손상 : II. 미세구조의 영향)

  • 이승건
    • Journal of Powder Materials
    • /
    • v.5 no.1
    • /
    • pp.22-27
    • /
    • 1998
  • The effect of the $\alpha$/$\beta$ phase fraction on the mechanical properties in silicon nitrides was investigated in part 1. In part II, we describe the role of microstructure on the mechanical properties and contact damage of silicon nitrides with coarse/equiaxed and coarse/elongated microstructures. Grain sizes and shapes were controlled by starting powder. Hertzian indentation using spherical indenter was also used to investigate contact damage behavior. Cone cracks from the spherical indentation were suppressed when the silicon nitride contains coarse and elongated grains. Coarse and elongated grains played an important role of cone crack suppression. The size of quasi-plastic zone does not depend on grain size or shape but depends on the fraction of $\alpha$/$\beta$ phase. A quasi-plastic zone was consisting of microcracks by shear stress during indentation.

  • PDF

Attrition Milling and Reaction-sintering of the Oxide-Metal Mixed Powders: II. Reaction-sintering Behavior as the Milling Characteristics of Powders (산화물과 금속 복합 분말의 Attrition Milling 및 반응소결: II. 분말의 분쇄특성에 따른 반응소결 거동)

  • 황규홍;김의훈
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.448-456
    • /
    • 1994
  • The reaction-sintered alumina and zirconia-alumina ceramics were fabricated from the Al/Al2O3 or Zl/ZrO2(Ca-PSZ) powder mixtures via the attrition milling. And the effects of the milling characteristics of used raw powders on reaction sintering were investigated. After attrition milling and isopressing at 400 MPa the Al/Al2O3 specimen was oxidated at 1200℃ for 8 hours followed by sintering at 1550℃ for 3 hours. Because mixed powders of flake-type Al with coarse alumina was much more effectively comminuted than the globular-type Al with coarse alumina powders, it's sintered body of more than 97% theoretical density was achived, but low contents of Al leads to relatively higher shrinkage of about 8%. And because coarse alumina particles was much more beneficial in cutting and reducing the ductile Al particles, using the coarse alumina powder was much more effective in reaction sintering. Fused Ca-PSZ powder was reaction sintered with Al at 1550℃ for 3 hours and low shrinkage ZrO2-Al2O3 composites were fabricated. But because Al/Ca-PSZ powder mixtures were not effectively milled the reaction sintering and densification was difficult. And the Ca ion in Ca-PSZ grains diffused into alumina grains during sintering so that the unstabilization of Ca-PSZ body was occured which gave the microcracks in the specimens.

  • PDF

Effect of waste glass as powder and aggregate on strength and shrinkage of fiber reinforced foam concrete

  • Mayada A. Kareem;Ameer A. Hilal
    • Advances in materials Research
    • /
    • v.12 no.4
    • /
    • pp.331-349
    • /
    • 2023
  • Foam concrete can be considered as environmental friendly material due to its low weight, its minimal cost and a possibility to add waste materials in its production. This paper investigates the possibility of producing foam concrete with waste glass as powder and aggregate. Then, the effect of using waste glass on strength and drying shrinkage of foam concrete was examined. Also, the effect of incorporating polypropylene fibers (12 mm length and proportion of 0.5% of a mix volume) on distribution of waste glass as coarse particles within 1200 kg/m3 foam concrete mixes was evaluated. Waste glass was used as powder (20% of cement weight), as coarse particles (25%, 50% and 100% instead of sand volume) and as fine particles (25% instead of sand volume). From the results, the problem of non-uniform distribution of coarse glass particles was successfully solved by adding polypropylene fibers. It was found that using of waste glass as coarse aggregate led to reduce the strength of foam concrete mixes. However, using it with polypropylene fibers in combination helped in increasing the strength by about 29- 50% for compressive and 55- 71% for splitting tensile and reducing the drying shrinkage by about (31- 40%). In general, not only the fibers role but also the uniformly distributed coarse glass particles helped in improving and enhancing the strength and shrinkage of the investigated foam concrete mixes.

The Influence of the Aggregate Grain Shape on Compactability of High Flowing Concrete (고유동콘크리트의 충전특성에 미치는 골재 입형의 영향)

  • 이승한;정용욱;이원기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.21.2-274
    • /
    • 1999
  • This study aims to examine the influence of the unit powder content of concrete and the fine aggregate ration of high flowing concrete after the improvement of grain shape of the coarse aggregate. According to the experimental results, flowbility and compating of concrete presents the best states in the S/a which has the smallest void ratio. The coarse aggregate after improvement of grain shape has been changed from 0.68 circular ratio of disc shape to 0.73 circular shape. It lead to be down 6% of fine aggregate ratio (from 47% to 41%), which is satisfactory to compacting. Also, the improvement of grain shape of the coarse aggregate lead the lowest unit powder content to be down 60kg/㎥ from (530kg/㎥ to 470kg/㎥). And about 11% unit water content can be reduced as unit powder conent is down.

  • PDF

Influence of the Morphology and the Particle Size on the Processing of Bronze 90/10 Powders by Metal Injection Moulding (MIM)

  • Contreras, Jose M.;Jimenez-Morales, Antonia;Torralba, Jose M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.503-504
    • /
    • 2006
  • The MIM technology is an alternative process for fabricating near net shape components that usually uses gas atomised powders with small size $(<\;20\;{\mu}m)$ and spherical shape. In this work, the possibility of changing partially or totally spherical powder by an irregular and/or coarse one that is cheaper than the former was investigated. In this way, different bronze 90/10 components were fabricated by mixing three different types of powder, gas and water atomised with different particle sizes, in order to evaluate how the particle shape and size affect the MIM process.

  • PDF

Preparation of TZM Alloys Having Elongated Coarse-grain Structure with High Aspect Ratio and their Mechanical Properties

  • Toyosima, Gouhei;Nagae, Masahiro;Yoshio, Tetsuo;Takada, Jun;Hiraoka, Yutaka;Takida, Tomohiro
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1163-1164
    • /
    • 2006
  • TZM alloy having elongated coarse-grain structure was developed by three-step internal nitriding treatment at 1423 to 1873 K in $N_2$ and subsequent recrystallization treatment at 2173 K in vacuum. Some specimens were subjected to re-nitriding treatment at 1873 K for 16 h. After the recrystallization treatment, aspect ratio (L/W) of grains for rolling direction was about 50 at the maximum. Yield stress obtained at 1773 K after re-nitriding treatment was about 6 times as large as that of recrystallized specimen. Re-nitriding was very effective in the improvement in strength of TZM alloy having elongated coarse-grain structure.

  • PDF