• 제목/요약/키워드: coal-burning power plant

검색결과 26건 처리시간 0.019초

Co-combustion of Bituminous Coal with Anthracite in a Down-firing, 200 MW Boiler

  • Park, Ho Young;Baek, Se Hyun;Kim, Young Joo;Kim, Tae Hyung;Kim, Hyun Hee;Lim, Hyun Soo;Park, Yoon Hwa
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제1권1호
    • /
    • pp.93-97
    • /
    • 2015
  • The combustion tests for Korean anthracite-bituminous coal blend were carried out in the 200 MW utility boiler. The burning characteristics of the blend were studied with a thermogravimetric analyzer (TGA). From the observation of TGA burning profiles, it was found that the presence of bituminous coal in the blend appeared to enhance the reactivity of anthracite in the higher temperature region, indicating certain interactions between the two coals. The plant test showed the boiler operation was reasonably stable with somewhat poor combustion efficiency, and some modification of the combustion environment in the furnace is necessitate for the further stable plant operation.

혼소율을 고려한 화력 발전소의 CO2 대기배출량 계산 (Calculation of CO2 Emission for Fossil-Fired Thermal Power Plant considering Coal-Oil Mix Rate)

  • 이상중;김순기
    • 조명전기설비학회논문지
    • /
    • 제24권10호
    • /
    • pp.67-72
    • /
    • 2010
  • G8 summit meeting held in July 2008 decided to set up a long-term goal, by 2050, reducing the world greenhouse emissions by half of those emitted in 1990. In November 2009, the Government announced to reduce the national $CO_2$ emission by 30[%] of BAU by 2020. Electric power industries in Korea produce most of their electricity by burning fossil fuels, and emit approximately 28[%] of national $CO_2$ emissions. Monitoring the $CO_2$ emissions. Monitoring the $CO_2$ emission of electric power plants is very important. This paper presents a method to calculate the hourly $CO_2$ emission for a thermal power plant burning mixture of coal and oil using the performance test data and coal-oil mix rate. An example of $CO_2$ emission calculation is also demonstrated.

민코 아역청탄의 순산소 연소특성 (Combustion Characteristics of Minco Sub-bituminous Coal at Oxy-Fuel Conditions)

  • 김재관;이현동;장석원;김성철
    • 한국연소학회지
    • /
    • 제14권2호
    • /
    • pp.1-9
    • /
    • 2009
  • New way to effectively capture $CO_2$ in coal fired power plant is the combustion of coal using oxy-fuel technology. Combustion characteristics of Minco sub-bituminous coal at oxy-fuel conditions using TGA and drop tube furnace (DTF) were included activation energy about the char burnout, volatile yield and combustion efficiency of raw coal, the porosity of pyrolyzed char and fusion temperature of by-product ash. TGA result shows that the effect of $CO_2$ on combustion kinetics reduces activation energy by approximately 7 kJ/mol at air oxygen level(21% $O_2$) and decreases the burning time by approximately 16%. The results from DTF indicated similar combustion efficiency under $O_2/CO_2$ and $O_2/N_2$ atmospheres for equivalent $O_2$ concentration whereas high combustion efficiency under $O_2/N_2$ than $O_2/CO_2$ was obtained for high temperature of more than $1,100^{\circ}C$. Overall coal burning rate under $O_2/CO_2$ is decreased due to the lower rate of oxygen diffusion into coal surface through the $CO_2$ rich boundary layer. By-product ash produced under $O_2/CO_2$ and $O_2/N_2$ was similar IDT in irrelevant to $O_2$ concentration and atmospheres gas during the coal combustion.

  • PDF

석탄연소 보일러에서 생성된 석탄회의 분석과 형성 메커니즘 해석에 대한 연구 (A Study on the Formation Mechanism of the Fly Ash from Coal Particles in the Coal Burning Boiler)

  • 이정언;이재근
    • 대한기계학회논문집B
    • /
    • 제22권12호
    • /
    • pp.1691-1701
    • /
    • 1998
  • Fly ash produced in coal combustion is a fine-grained material consisting mostly of spherical, glassy, and porous particles. A study on the formation mechanism of the fly ash from coal particles in the pulverized coal power plant is investigated with a physical, morphological, and chemical characteristic analysis of fly ash collected from the Samchonpo power plant. This study may contribute to the data base of domestic fly ash, the improvement of combustion efficiency, fouling phenomena and ash collection in the electrostatic precipitator. The physical property of fly ash is determined using a particle counter for the measurement of ash size distribution. Morphological characteristic of fly ash is performed using a scanning electron micrograph. The chemical components of fly ash are determined using an inductively coupled plasma emission spectrometry(ICP). The distribution of fly ash size was bi-modal and ranged from 12 to $19{\mu}m$ in mass median diameter. Exposure conditions of flue gas temperature and duration within the combustion zone of the boiler played an important role on the morphological properties of the fly ash such as shape, particle size and chemical components. The evolution of ash formation during pulverized coal combustion has revealed three major mechanisms by large particle formation due to break-up process, gas to particle conversion and growth by coagulation and agglomeration.

저급탄 연소 석탄회의 미연물질 특성 분석 (Characteristics of Unburned Material Derived from Coal-fired Power Plant Burning Low Grade Coal)

  • 박호영;김영주;김태형;백세현;김경수;권달정
    • 에너지공학
    • /
    • 제21권1호
    • /
    • pp.68-74
    • /
    • 2012
  • 국내 석탄화력발전소의 아역청탄과 역청탄의 혼소는 일반화되어 있으며 아역청탄의 비율이 무게 기준으로 50%가 넘는 경우도 있다. 저급탄인 아역청탄의 혼소 비율이 높아짐에 따라 연소 부산물인 비회에서 미연물질이 다량 발생하고 있으며 이는 콘크리트 혼화제로서의 비회 재활용을 가로막는 중요한 인자로 작용하고 있다. 본 연구에서는 아역청탄 혼소율이 높은 국내 500MW 표준 석탄화력발전소에서 미연물질이 포함된 비회를 입수하여 이에 대한 분석을 수행하였다. 이러한 미연물질은 석탄의 열분해 생성물인 검댕(soot)인 것으로 나타났으며 실제 석탄화력발전소에서 사용하고 있는 석탄과 혼탄의 성상 데이터와 CPD모델을 사용하여 혼탄별 검댕(soot)의 발생가능성을 분석하였다.

화력발전소 발생 플라이애쉬를 이용한 인공골재 제조 (Fabrication of Lightweight Aggregates Using Fly Ash from Coal Burning Heat Power Plant)

  • 윤수종
    • 한국분말재료학회지
    • /
    • 제13권2호
    • /
    • pp.102-107
    • /
    • 2006
  • Recycling industrial wastes such as fly ash from a coal burning heat power plant and shell from an oyster farming were investigated to prevent environment contamination as well as to enhance the value of recycling materials. In this study, the lightweight aggregates and the red bricks were fabricated from fly ashes with other inorganic materials and wastes. The starting materials of the lightweight aggregate were fly ash powder and water glass, and the compacts of these materials were heat treated at $1100^{\circ}C$. The fabricated lightweight aggregates had low bulk density, $0.9-1.2\;g/cm^3$, hence floated on the water and had the strength of 7.0-11.0 MPa and the modulus of 2900-3300 MPa which indicates it has enough strength as the aggregate. Another type of the light weight aggregate was prepared from fly ashes, shell powders and clays. The bulk density, porosity, and compressive strength of these aggregates were $1.19-1.34\;g/cm^3,\;18.3{\sim}56.1%$ and 5-12 MPa, respectively. The addition of a small amount of fly ash powder prevented hydration of the light weight aggregates. The red brick was also fabricated from the fly ash containing materials. It is suitable for the brick facing of a building as it has moderate strength and low water absorption rate.

Copper/Nickel/Manganese Doped Cerium Oxides Based Catalysts for Hydrogenation of CO2

  • Toemen, Susilawati;Bakar, Wan Azelee Wan Abu;Ali, Rusmidah
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2349-2356
    • /
    • 2014
  • The recycling technology by the catalytic conversion is one of the most promising techniques for the $CO_2$ treatment of coal burning power plant flue gases. The conversion of $CO_2$ to valuable product of $CH_4$ can be used as a fuel to run the turbine for electricity generation. Through this technique, the amount of coal needed for the combustion in a gas turbine can be reduced as well as $CO_2$ emissions. Therefore, a series of catalysts based on cerium oxide doped with copper, nickel and manganese were prepared by impregnation method. From the characterization analysis, it showed that the prepared catalysts calcined at $400^{\circ}C$ were amorphous in structure with small particle size in the range below 100 nm. Meanwhile, the catalyst particles were aggregated and agglomerated with higher surface area of $286.70m^2g^{-1}$. By increasing the calcination temperature of catalysts to $1000^{\circ}C$, the particle sizes were getting bigger (> 100 nm) and having moderate crystallinity with lower surface area ($67.90m^2g^{-1}$). From the catalytic testing among all the prepared catalysts, Mn/Ce-75/$Al_2O_3$ calcined at $400^{\circ}C$ was assigned as the most potential catalyst which gave 49.05% and 56.79% $CO_2$ conversion at reaction temperature of $100^{\circ}C$ and $200^{\circ}C$, respectively.

기술사마당 - 도시 쓰레기 소각에서 발생하는 다이옥신으로부터 국민건강을 지키자

  • 최해욱
    • 기술사
    • /
    • 제46권2호
    • /
    • pp.44-50
    • /
    • 2013
  • The treatment of city life wastes is headache problem. Now, only small portion of burnable wastes is burnt at modern process incinerators, the other large portion is buried in the soil by landfill method. The burnable wastes will be increased year by year. The dioxin, the cancer-causing agent, produced by incineration of wastes influences harmful effect to national human health. The new idea of burnable wastes treatment is using the city life wastes as auxiliary fuel of fluidizing bed combustion boiler of large scale coal-fired power plant. The dioxin-free treatment of burnable wastes is sucessfully achieved by burning the wastes, in flyash storm at fluidizing bed combustion boiler.

  • PDF

미세입자(PM2.5)의 배출원 구성물질 성분비 개발에 관한 연구 (A Study on the Development of Source Profiles for Fine Particles (PM2.5))

  • 이학성;강충민;강병욱;이상권
    • 한국대기환경학회지
    • /
    • 제20권3호
    • /
    • pp.317-330
    • /
    • 2004
  • The Purpose of this study was to develop the P $M_{2.5}$ source Profiles, which are mass abundances (fraction of total mass) of a chemical species in P $M_{2.5}$ source emissions. The source categories studied were soil, road dust, gasoline and diesel vehicles, industrial source, municipal incinerator, coal-fired power plant, biomass burning, and marine. The chemicals analyzed were ions. elements. and carbons. From this study, soil source had the crustal components such as Si, hi, and Fe. In the case of road dust. Si, OC, Ca, Fe had large abundances. The abundant species were S $O_4$$^{2-}$, C $l^{[-10]}$ , N $H_4$$^{+}$, and EC in the gasoline vehicle and EC, OC, C $l^{[-10]}$ , and S $O_4$$^{2-}$ in the diesel vehicle. The main components were S $O_4$$^{2-}$, S N $H_4$$^{+}$, and EC in the industrial source using bunker C oil as fuel, C $l^{[-10]}$ , N $H_4$$^{+}$, Fe, and OC in the municipal incinerator source, and Si, Al, S $O_4$$^{2-}$, and OC in the coal -fired power plant source. In the case of biomass burning, OC, EC, and C $l^{[-10]}$ were mainly emitted. The main components in marine were C $l^{[-10]}$ , N $a^{+}$, and S $O_4$$^{2-}$.EX> 2-/.

Application of Representative $PM_{2.5}$ Source Profiles for the Chemical Mass Balance Study in Seoul

  • Kang, Choong-Min;Kang, Byung-Wook;SunWoo, Young;Lee, Hak-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제24권E1호
    • /
    • pp.32-43
    • /
    • 2008
  • Source samples were collected to construct source profiles for 9 different source types, including soil, road dust, gasoline/diesel-powered vehicles, a municipal incinerator, industrial sources, agricultural/biomass burning, marine aerosol, and a coal-fired power plant. Seasonal profiles for 'Chinese aerosol', aerosols derived from the urban area of China, were reconstructed from seasonal $PM_{2.5}$ compositions reported in Beijing, China. Ambient $PM_{2.5}$ at a receptor site was also measured during each of the four seasons, from April 2001 to February 2002, in Seoul. The Chemical Mass Balance receptor model was applied to quantify source contributions during the study period using the estimated source profiles. Consequently, motor vehicle exhaust (33.0%), in particular 23.9% for diesel-powered vehicles, was the largest contributor affecting the $PM_{2.5}$ levels in Seoul, followed by agricultural/biomass burning (21.5%) and 'Chinese aerosol' (13.1%), indicating contributions from long-range transport. The largest contributors by season were: for spring, 'Chinese aerosol' (31.7%); for summer, motor vehicle exhaust (66.9%); and for fall and winter, agricultural/biomass burning (31.1% and 40.1%, respectively). These results show different seasonal patterns and sources affecting the $PM_{2.5}$ level in Seoul, than those previously reported for other cities in the world.