• Title/Summary/Keyword: coal mining

Search Result 263, Processing Time 0.02 seconds

Mechanical properties and microstructures of stabilised dredged expansive soil from coal mine

  • Chompoorat, Thanakorn;Likitlersuang, Suched;Sitthiawiruth, Suwijuck;Komolvilas, Veerayut;Jamsawang, Pitthaya;Jongpradist, Pornkasem
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.143-157
    • /
    • 2021
  • Expansive soil is the most predominant geologic hazard which shows a large amount of shrinkage and swelling with changes in their moisture content. This study investigates the macro-mechanical and micro-structural behaviours of dredged natural expansive clay from coal mining treated with ordinary Portland cement or hydrated lime addition. The stabilised expansive soil aims for possible reuse as pavement materials. Mechanical testing determined geotechnical engineering properties, including free swelling potential, California bearing ratio, unconfined compressive strength, resilient modulus, and shear wave velocity. The microstructures of treated soils are observed by scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy to understand the behaviour of the expansive clay blended with cement and lime. Test results confirmed that cement and lime are effective agents for improving the swelling behaviour and other engineering properties of natural expansive clay. In general, chemical treatments reduce the swelling and increase the strength and modulus of expansive clay, subjected to chemical content and curing time. Scanning electron microscopy analysis can observe the increase in formation of particle clusters with curing period, and x-ray diffraction patterns display hydration and pozzolanic products from chemical particles. The correlations of mechanical properties and microstructures for chemical stabilised expansive clay are recommended.

Stabilization of Arsenic in Paddy Soils Using Stabilizers (논토양 내 비소 불용화에 대한 안정화물질의 처리 효과)

  • Kang, Min Woo;Oh, Sejin;Kim, Sung-Chul;Lee, Sang Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.1
    • /
    • pp.17-22
    • /
    • 2019
  • BACKGROUND: Soil contamination of As is a very sensitive environmental issue due to its adverse impact on human health and different characteristics with other heavy metals. With public awareness of As poisoning, there has been growing interest in developing guideline and remediation technologies for As-contaminated soil. The objective of this research was to evaluate the effectiveness of stabilizing amendments and soil dressing methods on the mobility of As in the contaminated rice paddy soils nearby mining area. METHODS AND RESULTS: Different amendments were mixed with surface and subsurface contaminated soils at a ratio of 3% (w/w) and monitored for five months. Three different extractants including 0.01M $CaCl_2$, TCLP, and PBET were used to examine As bioavailability in the soil and the concentration of As in rice grain was also measured with an inductively coupled plasma (ICP) spectroscopy. The results showed that all amendment treatments decreased As concentration compared to the control. Especially, coal mine drainage sludge (CMDS) treatment showed the highest efficiency of decreasing As concentration in the soil and rice grain. The values of Pearson correlation (r) between As concentrations in the soil and rice grain were 0.782, 0.753, and 0.678 for $CaCl_2$, TCLP, and PBET methods, respectively. Especially, $CaCl_2$ method was highly correlated between As concentrations of the soil and soil solution (r=0.719), followed by TCLP (r=0.706), PBET (r=0.561) methods. CONCLUSION: Stabilizing amendments can effectively reduce available As concentration in the soils as well as soil solution, and thereby potentially mitigating risks of crop contamination by As.

Remediation of As-contaminated Soil Using Magnetite and Bottom Ash (비소 오염 토양의 복원을 위한 자철석과 바닥재 활용)

  • Se Jin Oh;Min Woo Kang;Jong Cheol Lee;Hun Ho Lee;Hyun-Seog Roh;Yukwon Jeon;Dong Jin Kim;Sang Soo Lee
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.223-229
    • /
    • 2022
  • BACKGROUND: Mining activities, smelter discharges, and sludges are the major sources of heavy metal contamination to soils. The objective of this study was to determine the efficiency of magnetite and bottom ash derived from coal ash in remediating As-contaminated soil. METHODS AND RESULTS: An incubation experiment was conducted for 10 weeks. Magnetite and bottom ash at different rates and ratios were applied to each plastic bottle repacked with 1,000 g of dried As-contaminated soil. After 3-weeks of incubation, the concentrations of available As were measured by using Mehlich-3, SBET, and sequential extraction methods. All of the subjected soil amendments resulted in significant decreases in available As concentration compared to the controls. The addition of magnetite at the highest rate was the best to stabilize As in the soils; however, the values of As concentration varied with the extraction methods. CONCLUSION(S): To ensure the stabilization accuracy of heavy metals in soil, both single and sequential extractions are recommended. The magnetite derived from fly coal ash can also be applicable as a heavy metal stabilizer for the As-contaminated soil.

Stability Analysis of Open Pit Slopes in the Pasir Coal Field, Indonesia (인도네시아 Pasir 탄전에서의 노천채탄장 사면의 안전성해석)

  • 정소걸;선우춘;한공창;신희순;박연준
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.183-193
    • /
    • 2000
  • A series of studies such as geological logging data analysis, detailed geological survey, rock mass evaluation, in-situ and laboratory tests, rock strength and mechanical properties of the rock were concerned. The stability of the slope were carried out inorder to design the pit slope and individual benches using the stereographic projection analysis and numerical methods in Roto Pit of Pasir coal fetid. The bedding plane was one of the major discontinuities in the Roto Pit and the dip of which is about $60^{\circ}$in the northern part and $83^{\circ}$in the southern part. The dip of bedding becomes steeper from north to south. The plane and toppling failures are presented in many slopes. In laboratory test the average uniaxial compressive strength of mudstone was 9 MPa and that of weak sandstone was 10 MPa. In-situ test showed that the rocks of Roto north mining area are mostly weak enough to be classified in grade from R2(weak) to R3(medium strong weak) and the coal is classified in grades from R1(Very weak) to R2(Weak). The detailed stability analysis were carried out on 4 areas of Roto north(east, west, south and north), and 2 areas of Roto south(east and west). In this paper, the minimum factor of safety was set to 1.2 which is a general criterion for open pit mines. Using the stereographic projection analysis and the limit equilibrium method, slope angles were calculated as 30~$36^{\circ}$for a factor of safety greater than 1.2. Then these results were re-evaluated by numerical analysis using FLAC. The final slope angles were determined by rational described abode. A final slope of 34 degrees can guarantee the stability for the eastern part of the Roto north area, 33 degrees for the western part, 35 degrees for the northern part and 35 degrees for the southern part. For the Roto south area, 36 degrees was suggested for both sides of the pit. Once the pit slope is designed based on the stability analysis and the safety measures. the stability of 니ope should be checked periodically during the mining operations. Because the slope face will be exposed long time to the rain fall, a study such aspreventive measures against weathering and erosion is highly recommended to be implemented.

  • PDF

Stability Analysis of Open Pit Slopes in the Pasir Coal Field, Indonesia (인도네시아 Pasir 탄전에서의 노천채탄장 사면의 안정성 해석)

  • 정소걸;선우춘;한공창;신희순;박연준
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.430-440
    • /
    • 2000
  • A series of studies such as geological logging data analysis, detailed geological survey, rock mass evaluation, in-situ and laboratory tests, rock strength and mechanical properties of the rock were concerned. The stability of the slope were carried out inorder to design the pit slope and individual benches using the stereographic projection analysis and numerical methods in Roto Pit of Pasir coal field. The bedding plane was one of the major discontinuities in the Roto Pit and the dip of which is about 60$^{\circ}$ in the northern part and 83$^{\circ}$ in the southern part. The dip of bedding becomes steeper from north to south. The plane and toppling failures are presented in many slopes. In laboratory test the average uniaxial compressive strength of mudstone was 9MPa and that of weak sandstone was 10MPa. In-situ test showed that the rocks of Roto north mining area are mostly weak enough to be classified in grade from R2(weak) to R3(medium strong weak) and the coal is classified in grades from R1(Very weak) to R2(Weak). The detailed stability analysis were carried out on 4 areas of Roto north (east, west, south and north), and 2 areas of Roto south(east and west). In this paper, the minimum factor of safety was set to 1.2 which is a general criterion for open pit mines. Using the stereographic projection analysis and the limit equilibrium method, slope angles were calculated as 30∼36$^{\circ}$ for a factor of safety greater than 1.2. Then these results were re-evaluated by numerical analysis using FLAC. The final slope angles were determined by rational described above. A final slope of 34 degrees can guarantee the stability for the eastern part of the Roto north area, 33 degrees for the western part, 35 degrees for the northern part and 35 degrees for the southern part. For the Roto south area, 36 degrees was suggested for both sides of the pit. Once the pit slope is designed based on the stability analysis and the safety measures, the stability of slope should be checked periodically during the mining operations. Because the slope face will be exposed long time to the rain fall, a study such aspreventive measures against weathering and erosion is highly recommended to be implemented.

  • PDF

A Study on the Demand for Timber in South Korea - with an Emphasis on the Long-term Forecasts - (우리나라의 목재수요(木材需要)에 관한 연구(硏究) - 장기수요전망(長期需要展望)을 중심으로 -)

  • Youn, Yeo Chang;Kim, Eui Gyeong
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.2
    • /
    • pp.124-138
    • /
    • 1992
  • This study was carried out to estimate long-term demand functions, and to project consumption of roundwood to the year 2030, using time series data for the period 1970-1990. Especially, the unique features of this study are in the estimation of demand functions for roundwood by species group and by end-use with help of dummy variables. It also, attempts to show how dummy variables can be utilized for improving the estimation result. The result of this study reveals that hardwood roundwood consumption is being substituted by softwood roundwood due to the rapid increase in the relative price of softwood, and this trend is expected to continue in the near future. The consumption of roundwood by mining industry is projected to fall as the coal :mining is expected to decline. The parametric estimates of timber demand function by species group and by end-use indicate that the demand for timber in Korea is more responsive to the performance of domestic economy as a whole, represented by GDP in this study, than to other variables such as own and substitute prices. The effects of population growth and substitute prices could not be determined.

  • PDF

Stability Analysis of Vertical Pipeline Subjected to Underground Excavation (지하공간 굴착에 따른 수직파이프 구조물의 안정성해석)

  • 김종우
    • Tunnel and Underground Space
    • /
    • v.10 no.4
    • /
    • pp.533-543
    • /
    • 2000
  • Deformation behavior and stability of vertical pipeline subjected to underground excavation have been studied by means of numerical analysis. Vortical ground displacements cause the pipe to be compressed, while horizontal ones cause it to be bent. In that region the vertical pipeline meets with the induced compressive stress and bending stress. In addition horizontal rock stress subjected to underground excavation may press the tube in its radial direction and it finally produces the tangential stress of pipe. In this study active gas well system is considered as an example of vertical pipelines. Factor analysis has been conducted which has great influence on the pipeline behavior. Three case studies are investigated which have the different pillar widths and gas well locations in pillar. For example, where overburden depth is 237.5 m and thickness of coal seam is 2.5 m, chain pillar of 45.8 m width in the 3-entry longwall system is proved to maintain safely the outer casing of gas welt which is made of API-55 steel, 10$\frac{3}{4}$ in. diameter and 0.4 in. thickness. Finally an active gas well which was broken by longwall mining is analyzed, where the induced shear stress turn out to exceed the allowable stress of steel.

  • PDF

A Study on the Evaluation Method of Subsidence Hazard by a Diffusion Equation and its Application (확산방정식을 이용한 침하 위험도 평가 기법 및 그 적용)

  • Ryu, Dong-Woo;Synn, Joong-Ho;Song, Won-Kyong;Kim, Taek-Kon;Park, Joon-Young
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.372-380
    • /
    • 2007
  • Surface damage due to subsidence is an inevitable consequence of underground mining, which may be immediate or delayed for many years. The surface damage due to abandoned underground mine is observed to be two subsidence types such as simple sinkhole or trough formation to a large scale sliding of the ground from with in the subsided area. An evaluation of the risk of a subsidence occurrence is vital in the areas affected by mining subsidence. For a subsidence prediction or a risk evaluation, there has been used various methods using empirical models, profile functions, influence functions and numerical models. In this study, a simple but efficient evaluation method of subsidence hazard is suggested, which is based on a diffusion theory and uses just information about geometry of caving and topography. The diffusion model has an analogous relationship with granular model which can explain a mechanism of subsidence. The diffusion model is applied for the evaluation of subsidence hazard in abandoned metal and coal mines. The model is found to be a simple but efficient tool because it needs information of geometry of caving and gangway and the topography.

Research on the actual vibration exposure of workers engaging in vibration induced works (진동작업 종사 근로자의 진동노출 실태에 관한 연구)

  • Kim, Kab-Bae;Chung, Eun-Kyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.178-185
    • /
    • 2012
  • In Korea, researches on the exposure assessment of the hand-transmitted vibration started from the mid-90, however, they were performed in the limited industries such as auto-assembly plants and the evaluation of the vibration was mostly conducted by ISO 5349(1986). Therefore, it was necessary to assess hand-transmitted vibration levels of workplace such as ship building/repairing industry or mining industry where occupational injuries are largely occurred and to evaluate the vibration levels using revised ISO 5349(2001). The SVAN 949 Four Channels Sound & Vibration Analyser was used for the measurement. The workers using a chain saw were exposed to $1.7{\sim}2.8m/s^2$ of daily vibration level. Workers using a rock drill in a coal mining were exposed to the highest vibration acceleration among workers and the levels were $7.1{\sim}10.8m/s^2$. Vibration levels of grinders were different according to the types of grinders. The hand-transmitted vibration of 3 types of grinders were measured and the levels were $3.3{\sim}11.1m/s^2$. Workers using a impact wrench were exposed to $1.5{\sim}1.6m/s^2$ of vibration. Out of 20 kinds of machines, only 4 tools provided the information of vibration acceleration on the instructions. In addition, the current condition of workplaces to control vibration was not much different from the past because there are no vibration exposure limit.

  • PDF

A Study on the Determination of Grout Injection Volume according to the Angle of Mine Cavity (채굴적 경사에 따른 그라우트 주입량 결정에 관한 연구)

  • Lee, Byung-Yoon;Jeon, Seok-Won;Kim, Tae-Hyun;Cho, Jung-Woo;Kim, Kwan-Il;Kim, Tae-Hyok;Kim, Soo-Lo
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.107-122
    • /
    • 2009
  • Insufficient reinforcement for maximizing payability and benefits in mining cavities causes subsidence problems and it threatens residents' lives and properties. So many reinforcement management methods are developed and now various methods are being applied in the field. Among them, a filling method which sends reinforcement materials in the cavities is used extensively. However, domestic geological condition and coal mining methods are so complicate that make many steep cavities. Because of those problems, it is difficult to apply foreign methods directly, which is valid for horizontal cavities. In this study, the injection volume of quick setting grouting material which is developed for filling cavities in domestic condition and the shape of consolidated bodies are investigated. And a programming method for estimating proper injection amounts of filling materials is proposed. The results are verified by numerical analysis using UDEC.