• Title/Summary/Keyword: coal gasification slag(CGS)

Search Result 30, Processing Time 0.027 seconds

Engineering Properties of Concrete Mock-up Using Coal Gasification Slag as Fine Aggregate. (석탄가스화 발전슬래그를 잔골재로 사용한 콘크리트 Mock-up 부재의 공학적 특성)

  • Han, Jun-Hui;Lee, Young-Jun;Hyun, Seung-Yong;Han, Min-Cheol;Yoon, Ki-Won;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.159-160
    • /
    • 2018
  • In this study, the characteristics of the Mock-up test were reviewed to analyze the applicability of the coal gasification slag (CGS) from the integrated gasification combination Cycle (IGCC) to the concrete fine aggregate. The analysis shows that CGS and crushed sand mix is the best combination of CGS combined with about 50 % of CGS based on the effects of promoting liquidity and strength. This is expected to be a positive factor in securing the strength and flexibility of concrete given the optimal mix of CGS, and may also contribute to the improvement of quality.

  • PDF

Effect of Using Coal Gasification Slag as Fine Aggregate on Field Applicability of the Concrete through Mock-up Test (Mock up test를 통한 석탄가스화 발전슬래그를 잔골재로 사용한 콘크리트의 현장적용 가능성 분석)

  • Han, Jun Hui;Lee, Young Jun;Hyun, Seung Yong;Han, Min Cheol;Yoon, Ki Won;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.21-22
    • /
    • 2018
  • In this study, the characteristics of the Mock-up test were reviewed to analyze the applicability of the coal gasification slag (CGS) from the integrated gasification combination Cycle (IGCC) to the concrete fine aggregate. The analysis shows that CGS and crushed sand mix is the best combination of CGS combined with about 50 % of CGS based on the effects of promoting liquidity and strength. This is expected to be a positive factor in securing the strength and flexibility of concrete given the optimal mix of CGS, and may also contribute to the improvement of quality.

  • PDF

Reduction of Hydration heat of FA concrete using Coal Gasification Slag for Mixed Fine Aggregate (석탄 가스화 용융 슬래그를 혼합 잔골재로 사용한 FA 치환 콘크리트의 수화열 저감)

  • Han, Jun-Hui;Lee, Young-Jun;Choi, Il-Kyung;Kim, Jung;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.79-80
    • /
    • 2019
  • This study was intended to examine the possibility of reducing hydration heat by FA substitution and combination of slag (CGS) from coal gasification power generation (IGCC) with mixed aggregate for concrete. The analysis results showed good results if liquidity increases as the ratio of CGS increases, air volume decreases, and compressive strength is mixed up to 25% in the residual aggregate. The results showed that the heat of hydration was reduced compared to plain due to the boron content of CGS as the CGS substitution rate increased, but it was larger due to the combination with FA substitution. It was found that the heat of hydration was reduced.

  • PDF

The Characteristics of Isothermal Conduction Calorimetry and Specific Heat in Coal Gasification Slag (석탄 가스화 용융 슬래그의 비열 및 미소수화열 특성)

  • Han, Jun-Hui;Hu, Yun-Yao;Lim, Gun-Su;Kim, Su-Hoo;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.182-183
    • /
    • 2021
  • In this study, This is the result of thermal characteristics analysis to suggest an efficient method of using coal gasification slag(CGS) of byproduct from integrated gasification combined cycle(IGCC). In Specific Heat characteristics, CGS and CS showed similar values. Isothermal Conduction Calorimetry showed that the hydration reaction of cement was retarded when CGS was used. Therefore, it is expected that CGS will be used as an efficient alternative to reducing the hydration heat of mass concrete as a functional aggregate combination.

  • PDF

Physical Properties of Concrete According to Changing in The Types of Premix Cements and the Mixing Rate of CGS. (프리믹스 시멘트 종류 변화 및 CGS 치환에 따른 콘크리트의 물리적 특성)

  • Kim, Su-Hoo;Han, Soo-Hwan;Lim, Gun-Su;Hyun, Seung-Yong;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.63-64
    • /
    • 2021
  • In this study, Coal gasification slag(CGS) was replaced with fine aggregate to verify the physical properties of the concrete according to the change in cement types. As a result of the study, the use of CGS resulted in a decrease of superplasticizer and an decrease of AE agent. In addition, when 50% of mixed cement and CGS were replaced, the initial strength expression was delayed, and the strength enhancing effect was judged to be weak.

  • PDF

A Study on the Fundamental and Heat of Hydration Properties of Fly Ash Replacement Concrete Mixed with Coal Gasification Slag for Fine Aggregate (석탄 가스화 용융 슬래그를 잔골재로 사용하는 플라이애시 치환 콘크리트의 기초적 특성 및 수화열에 관한 연구)

  • Han, Min-Cheol;Choi, Il-Kyung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.1
    • /
    • pp.155-162
    • /
    • 2020
  • The aim of the research is to investigate the fundamental properties and heat of hydration reducing performance of the fly ash incorporated concrete mixture when the coal gas slag (CGS) from integrated gasification combined cycle (IGCC) is used as fine aggregate. From the results of the experiment, the workability was generally increased and the air content was decreased up to one to four percent with increasing the replacing ratio of CGS to fine aggregate. The compressive strength was similar or increased within five percent to the Plain mixture when the CGS was used as a fine aggregate. When the CGS and fly ash were used same time, the heat of hydration reducing performance was improved than single using cases either CGS or fly ash. Based on the results, for the concrete mixture using CSG as a portion of the combined fine aggregate, the general properties were improved and heat of hydration was decreased approximately 16 % when the fly ash was replaced 30 % to cement and the CGS was replaced less than 50 % to fine aggregate.

Properties of Cement Mortar Using CGS as Mixed Fine Aggregate (CGS를 잔골재로 혼합 사용하는 모르타르의 공학적 특성)

  • Han, Jun Hui;Lee, Young Jun;Hyun, Seung Yong;Park, Kyung Taek;Han, Min Cheol;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.138-139
    • /
    • 2018
  • This study is a basic review of the basic characteristics of mortar as a result of the use of concrete as a fine aggregate for CGS(coal gasification slag) generated from the IGCC(integrated gasification combined cycle). The analysis shows that CGS and crushed sand + seal sand mix is the best combination of CGS combined with about 75 % of CGS based on the effects of promoting liquidity and strength. This is expected to be a positive factor in securing the strength and flexibility of concrete given the optimal mix of CGS, and may also contribute to the improvement of quality.

  • PDF

Analysis of The Properties of Materials for Utilizing Fine Aggregates for Concrete for Coal Gasification Slag (석탄 가스화 용융 슬래그를 콘크리트용 잔골재로 활용하기 위한 재료 특성 분석)

  • Kim, Su-Hoo;Lim, Gun-Su;Han, Jun-Hui;Hyun, Seung-Yong;Kim, Jung;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.170-171
    • /
    • 2021
  • This study compared the characteristics of the newly established JISA 5011-5 coal gasification slag fine aggregate with the characteristics of CGS generated in Korean IGCC through microscopic analysis. As a result of the study, similar results to K_CGS and J_CGS were found

  • PDF

Development of a Pretreatment Process for Coal Gasification Slag to Convert High-quality Aggregates. (고품질 골재 전환을 위한 석탄 가스화 용융슬래그의 전처리 공정 개발)

  • Hu, Yun-Yao;Han, Soo-Hwan;Lim, Gun-Su;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.122-123
    • /
    • 2021
  • This study examines the performance of pretreatment process system as the initial construction stage of the pretreatment process system to use CGS, a by-product generated in IGCC, as a concrete fine aggregate of construction materials. The process undergoes a grinding process capable of grinding to a predetermined particle size during primary grinding and a sorting plant through sieve grading of 2.5 mm or less for particle size correction. Afterwards, it is hoped that the use of coal gasification slag of Korean IGCC as a fine aggregate for concrete will be distributed and expanded by producing quality-improved CGS fine aggregate using water as a medium for removing impurities and particulates.

  • PDF

Reduction of Hydration Heat of Mass Concrete Using Coal Gasification Slag as Mixed Fine Aggregates (석탄 가스화 용융 슬래그를 혼합잔골재로 활용한 매스 콘크리트 수화열 저감)

  • Han, Min-Cheol;Kim, Jong;Choi, Il-Kyeung;Han, Jun-Hui
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.551-562
    • /
    • 2021
  • In this study, to suggest an efficient method of using coal gasification slag(CGS), a byproduct from integrated gasification combined cycle(IGCC), as a combined fine aggregate for concrete mixture, the diverse performances of concrete mixtures with combined fine aggregates of CGS, river sand, and crushed sand were evaluated. Additionally, using CGS, the reduction of the hydration heat and the strength developing performance were analyzed to provide a method for reducing the heat of hydration of mass concrete by using combined fine aggregate with CGS and replacing fly ash with cement. The results of the study can be summarized as follows: as a method of recycling CGS from IGCC as concrete fine aggregate, a combination of CGS with crushed sand offers advantages for the concrete mixture. Additionally, when the CGS combined aggregate is used with low-heat-mix designed concrete with fly ash, it has the synergistic effect of reducing the hydration heat of mass concrete compared to the low-heat-designed concrete mixture currently in wide use.