• 제목/요약/키워드: coagulation of organics

검색결과 33건 처리시간 0.027초

응집 및 fenton 산화공정을 연계한 축산폐수처리에 관한 연구 (Astudy on Treatment of Livestock Wastewater using Coagulation and Fenton Oxidation Process)

  • 조창우;유재웅;정팔진
    • 한국물환경학회지
    • /
    • 제20권6호
    • /
    • pp.610-614
    • /
    • 2004
  • The objective of this study was to remove organics and color in livestock wastewater using coagulation and Fenton oxidation process. After coagulation process as $1^{st}$ treatment, organics in $1^{st}$ treatment water were removed by using OH radical produced in Fenton oxidation process. Removal efficiencies of $COD_{Mn}$ and color were 87.2% and 95.7% separately. At that time, the ratio of $Fe^{2+}/H_2O_2$ was 0.8~1.0, and range of reaction pH was effective at the pH of 3.5~3.8. The Reaction time of 120min more than 60min or 90min was sufficient in Fenton process. Removal efficiency of organics was higher two- or multi-stage treatment than one-stage treatment.

응집·한외여과 공정에서 응집조건 결정에 관한 연구 (Effect of Coagulation Condition on Coagulation/Ultrafiltration Membrane Process)

  • 문성용;이상협;김승현;문병현
    • 한국물환경학회지
    • /
    • 제21권4호
    • /
    • pp.379-384
    • /
    • 2005
  • In this research, coagulation was employed as the pretreatment for membrane process. The effective coagulation conditions were decided after the discussion of different coagulant doses and mixing conditions, etc. Raw water was taken from Nakdong River. The best operation occurred when G value was $230s^{-1}$ and the slow mixing lasted around 5 minutes at G value was $23s^{-1}$. To investigate the optimum coagulant dosage, the optimum organics removal was target as organic removal reduces membrane fouling effectively than particle removal. This result indicated that organics are more important causes than turbidity for membrane fouling. However, turbidity becomes an important factor after certain amount of organic matters is removed.

동복 호소수의 응집침전 및 활성탄 흡착에 의한 용존유기물 분자량 분포 특성 (Molecular Weight Distribution Characterization of Organics for the Dongbok Lake Water by Coagulation and Adsorption of Activated Carbon)

  • 정경훈;최형일
    • 한국환경과학회지
    • /
    • 제7권1호
    • /
    • pp.104-111
    • /
    • 1998
  • The Dongbok lake water before and after alum coagulation and activated carbon adsorption were analyzed in terms of organic contents, molecular weight distributuin (MWD), and UV-absorbance. Dissolved organic compounds in the Dongbok lake were fractionated into three molecular size classes by gel permeation chromatography. The fractionation was reasonably successful in isolating compounds with The bulk of the dissolved carbon was present in compounds of molecular weight in the range of 3,000~10,000. Alum coagulation preferentially treated molecules of high molecular weight, which has molecules larger than 10,000. The dissolved organic carbon (DOC) removal after activated carbon adsorption was high in the Fraction B , IR . The $A_{260}$/DOC ratio after alum and activated carbon treatment the Fraction II, III. This results suggest that the organics remaining after each treatment has a trihalomethane formation potential

  • PDF

알루미늄 응집제들에 의한 몇가지 유기화합물의 응집효과에 관한 연구 (A Study on the Coagulation Efficiencies of Some Organics by Aluminum Based Coagulants)

  • 김미향;김영만;최범석
    • 분석과학
    • /
    • 제12권6호
    • /
    • pp.478-483
    • /
    • 1999
  • Alum, PAC, PACS의 알루미늄 응집제에서 유기화합물의 응집효율을 조사하였다. pH에 따른 응집효율은 pH 6~7에서 가장 크며, 중성의 pH에서 응집효율은 PACS, PAC, alum의 순서로 감소하였다. 분자량이 큰 유기물은 모든 응집제에 대해 좋은 응집율을 보였으나 작은 분자들은 응집되지 않았다. 반면에 분자량이 작은 유기물 중에서 인접한 위치에 2개 이상의 COOH와 OH의 작용기를 가진 분자들은 10~80%의 응집효율을 보였다.

  • PDF

급속교반조건에서 Alum 응집제의 가수분해종 분포특성과 유기물특성변화 (Characterization of Natural Organic matter by Rapid Mixing Condition)

  • 송유경;정철우;손희종;손인식
    • 상하수도학회지
    • /
    • 제20권4호
    • /
    • pp.559-571
    • /
    • 2006
  • The overall objective of this research was to find out the interrelation of coagulant and organic matter during rapid mixing process and to identify the change of organic matter by mixing condition and to evaluate the effect of coagulation pH. During the coagulation, substantial changes in dissolved organics must be occurred by coagulation due to the simultaneous formation of microflocs and NOM precipitates. Increase in the organic removal efficiency should be mainly caused by the removal of microflocs formed during coagulant injection. That is, during the mixing period, substantial amount of dissolved organics were transformed into microflocs due to the simultaneous formation of microflocs and NOM precipitates. The results also showed that 40 to 80% of dissolved organic matter was converted into particulate material after rapid mixing process of coagulation. During the rapid mixing period, for purewater, formation of dissolved Al(III) (monomer and polymer) constant by rapid mixing condition, but for raw water, the species of Al hydrolysis showed different result. During the rapid mixing period, for high coagulant dose, Al-ferron reaction increases rapidly. At A/D(Adsorption and Destabilization) and sweep condition, both $Al(OH)_3(s)$ and dissolved Al(III) (monomer and polymer) exist, concurrent reactions by both mechanism appear to cause simultaneous precipitation.

응집-UF 전처리 공정에 의한 잔류 금속염이 역삼투막에 미치는 영향 (Effect of residual metal salt on reverse osmosis membrane by coagulation-UF pretreatment process)

  • 고길현;김수현;강임석
    • 상하수도학회지
    • /
    • 제33권6호
    • /
    • pp.413-420
    • /
    • 2019
  • Pretreatment system of desalination process using seawater reverse osmosis(SWRO) membrane is the most critical step in order to prevent membrane fouling. One of the methods is coagulation-UF membrane process. Coagulation-UF membrane systems have been shown to be very efficient in removing turbidity and non-soluble and colloidal organics contained in the source water for SWRO pretreatment. Ferric salt coagulants are commonly applied in coagulation-UF process for pretreatment of SWRO process. But aluminum salts have not been applied in coagulation-UF pretreatment of SWRO process due to the SWRO membrane fouling by residual aluminum. This study was carried out to see the effect of residual matal salt on SWRO membrane followed by coagulation-UF pretreatment process. Experimental results showed that increased residual aluminum salts by coagulation-UF pretreatment process by using alum lead to the decreased SWRO membrane salt rejection and flux. As the salt rejection and flux of SWRO membrane decreased, the concentration of silica and residual aluminum decreased. However, when adjusting coagulation pH for coagulation-UF pretreatment process, the residual aluminum salt concentration was decreased and SWRO membrane flux was increased.

금속산업폐수의 재이용을 위한 물리화학적 전처리공정의 유기물 및 무기물제거 특성 평가 (Evaluation of Organics and Inorganics Removal of Physicochemical Pretreatment Processes for Reuse of Metal Industry Wastewater)

  • 하동환;정진영
    • 대한환경공학회지
    • /
    • 제35권3호
    • /
    • pp.226-232
    • /
    • 2013
  • 역삼투기반 금속산업폐수 물재이용시스템의 전처리공정을 선정하기 위해 연수화, 응집침전, 활성탄, 이온교환 및 중화 침전공정에 대한 무기물 및 유기물 제거특성을 조사하였다. 유기물제거를 위해 DOC중 친수성 및 소수성 유기물을 분류하였으며, 이를 이용하여 조합공정을 최적화하였다. 다양한 전처리공정 중에서 연수화는 금속산업 방류수에 존재하는 칼슘경도(1,201 mg/L as $CaCO_3$)를 93.4%제거함과 동시에 소수성유기물을 모두 제거하는 것으로 나타났다. 연수화 후에 응집침전공정을 연계할 경우, 방류수에 포함된 유기물 5.1 mg DOC/L을 1.6 mg DOC/L까지 저감할 수 있었다. 또한, 금속공정 원폐수를 대상으로 가성소다를 이용한 중화침전공정을 적용하였을 때, 수중경도를 유발하지 않으면서도 철과 총용존성고형물을 효과적으로 제거할 수 있는 것으로 나타났다.

Struvite 결정화 공정을 이용한 새우가공폐수처리 (Treatment of shrimp processing wastewater using struvite crystallization process)

  • 정병곤
    • 수산해양기술연구
    • /
    • 제52권3호
    • /
    • pp.271-275
    • /
    • 2016
  • Recently, pollution problem in coastal water has become more serious and pollution including red tide serves as a main reason for reduction of fishes resources. Particularly, nutrients such as nitrogen and phosphorus are the most serious pollutants. Normally, biological wastewater treatment process is used in removing such nutrients. However, it is difficult to adopt the biological wastewater treatment process to a small-scale fish processing factory in case of using seawater as wash water. Thus, removing nutrients through struvite crystallization is investigated in this study for treating shrimp processing wastewater. Experiments were conducted by varying molar ratio of $Mg^{2+}:NH^4-N:PO^4-P$ from 1:1:1 to 2:1:1. It can be concluded that optimum molar ratio is 1:1:1. Struvite crystallization process is compared with chemical coagulation process using PAC and struvite crystallization process is proven as the more effective process in removing nutrients from wastewater. In view of results obtained from these experiments, struvite crystallization process is a promising method in removing nitrogen and phosphorus from wastewater; however, not so good in removing organics. Thus, struvite crystallization process is suitable as the pre-treatment process in treating shrimp processing wastewater and additional biological process is needed to remove organics.

전기응집을 이용한 2차 유출수의 질소.인 제거 공정 연구 (Removal of nitrogen and phosphorus of the secondary effluent by electro-coagulation)

  • 한송희;장인성
    • 상하수도학회지
    • /
    • 제26권4호
    • /
    • pp.579-589
    • /
    • 2012
  • To reduce extensive energy costs of the internal recycling for the purpose of denitrification in the advanced wastewater treatment, a post-treatment process using an electro-coagulation to treat nitrate in the secondary effluents is evaluated in this study. Removals of phosphorus and organics in the secondary effluents by the electro-coagulation were also evaluated to propose an alternative advanced wastewatert treatment process. A series of experiments of the electro-coagulation were carried out with the following 4 different samples: synthetic solution containing nitrate only, synthetic solution containing nitrate as well as phosphorus, secondary effluents from activated sludge cultivated in laboratory, and secondary effluents from real wastewater treatment plants. Removals of nitrate and phosphorus in the synthetic solution were 30 and 97 % respectively, which verified the feasibility of the process. Removals of nitrate, phosphorus and COD in the secondary effluents from the cultivated sludge in laboratory were 49, 90 and 19 % respectively. Removal efficiency of the total nitrogen, nitrrate, phosphorus and COD in the secondary effluent from real wastewater treatment plant were 50, 61, 98 and 80 % respectively. The removal of the total nitrogen was less than the nitrate as expected, which is due to the formation of ammonia nitrogen in the cathode. But the proposed scheme could be an energy saving and alternative process for the advanced wastewater treatment if further studies for the process optimization are carried out.

수자원 확보를 위한 URC공법의 적용 I: 유기물, 중금속, 영양염의 제거특성에 관한 연구 (Application of Ultra Rapid Coagulation for Securing Water Resource II: Study of organic, metals, and nutrients removal)

  • 박세진;윤태일;김재형;조경철
    • 청정기술
    • /
    • 제6권1호
    • /
    • pp.27-38
    • /
    • 2000
  • 초고속응집침전공정(URC)은 가중응집제(WCA)를 첨가하고 슬러지를 반송시켜 응결핵으로서의 역할을 수행시킴으로서 floc의 성장속도를 향상시키고, 입자표면의 흡착을 활성화하여 유기물, 중금속, 인 등 수중에 존재하는 오염물을 보다 효율적으로 제거하며, 기존의 응집 공정에 비하여 침전성을 향상시킬 수 있다. 현재까지 하수처리장과 하천, 호소에서 수행된 URC pilot-test와 Jar-test의 결과를 비교 검토하여 가중 응집제와 반송 슬러지에 대한 오염물 제거특성에 대한 연구가 수행되었으며, 수자원의 재이용을 위한 가능성을 평가하였다.

  • PDF