• Title/Summary/Keyword: coagulant(alum)

Search Result 85, Processing Time 0.027 seconds

Evaluation of Coagulation Characteristics of Fe(III) and Al(III) Coagulant using On-line Monitoring Technique (On-line 모니터링 기법을 이용한 Al염계와 Fe염계 응집제의 응집특성 평가)

  • Son, Hee-Jong;Yoom, Hoon-Sik;Kim, Sang-Goo;Seo, Chang-Dong;Hwang, Young-Do
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.715-722
    • /
    • 2014
  • Effects of coagulation types on flocculation were investigated by using a photometric dispersion analyzer (PDA) as an on-line monitoring technique in this study. Nakdong River water were used and alum and ferric chloride were used as coagulants. The aim of this study is to compare the coagulation characteristics of alum and ferric chloride by a photometric dispersion analyzer (PDA). Floc growing rates ($R_v$) in three different water temperatures ($4^{\circ}C$, $16^{\circ}C$ and $30^{\circ}C$) and coagulants doses (0.15 mM, 0.20 mM and 0.25 mM as Al, Fe) were measured. The floc growing rate ($R_v$) by alum was 1.8~2.8 times higher than that of ferric chloride during rapid mixing period, however, for 0.15 mM~0.25 mM coagulant doses the floc growing rate ($R_v$) by ferric chloride was 1.1~2.3 times higher than that of alum in the slow mixing period at $16^{\circ}C$ water temperature. Reasonable coagulant doses of alum and ferric chloride for turbidity removal were 0.1 mM (as Al) and 0.2 mM (as Fe), respectively, and the removal efficiency of those coagulant doses showed 94% for alum and 97% for ferric chloride. The appropriate coagulant dose of alum and ferric chloride for removing dissolved organic carbon (DOC) showed about 0.3 mM (as Al, Fe) and at this dosage, DOC removal efficiencies were 36% and 44%, and ferric chloride was superior to the alum for removal of the DOC in water.

Study on Change of Microbial Activity and Removal Efficiency of Phosphorus with Alum Injection in the Biological Process (생물학적 처리공정 내 Alum 주입에 따른 인 처리 효율과 미생물 활성도 변화에 관한 연구)

  • Choi, Jung Su;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.188-193
    • /
    • 2011
  • The effects of coagulants on the microorganisms when they are injected directly into the biological treatment facility for T-P removal have been easily observed from the results of past experiments. As such this study is set out to derive the effective plans for the coagulant dosage by analyzing the effects of the injected coagulant on the microbial activity during the chemical treatment for T-P removal. The research methods entailed the assessment of removal efficiency of T-P according to the coagulant dosage while changing the molar ration between Alum and influent phosphorus. At the same time Specific Oxygen Uptake Rate (SOUR) according to the coagulant dosage was measured. SOUR was used as a method for indirect assessment of the microbial activity according to the coagulant dosage. The results from the study showed that with the increase in the alum dosage, the removal efficiency T-P tended to increase. On the other hand, the increase in coagulant dosage resulted in the decrease in SOUR, which indicates the decrease in the microbial activity. Such reduction in the activity could be explained by the increase in the concentration of removal efficiency of $TBOD_5$. Based on experiment results from the study, it is determined that coagulant dosage affects the microbial activity. Moreover, the indirect assessment on the microbial activity using SOUR is considered possible.

ENHANCED COAGULATION: DETERMINATION OF CONTROLLING CRITERIA AND AN EFFECT ON TURBIDITY REMOVAL

  • Kim, Seung-Hyun
    • Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.105-111
    • /
    • 2005
  • The applicability of the USEPA's (United States Environmental Protection Agency) three criteria of enhanced coagulation (criterion 1-TOC level less than 2 mg/l. before chlorination; criterion II-% requirement of TOC removal; criterion III-point of diminishing return) for Korean waters was evaluated in this study. This study also investigated an effect of enhanced coagulation on turbidity removal, and attempted to identify the best coagulant for enhanced coagulation. Three different waters were used in this study: one river water and two lake waters. five different coagulants were used: alum, liquid alum, PACl, ferric chloride with and without water. Results of this study showed that all three criteria were achievable for the tested waters. For these waters, controlling criterion was found to be different depending upon raw water characteristics. When initial Toe level was low(< 4 mg/L), criterion I (< 2 mg/L) could be the controlling criterion. As TOC level increased, criterion II (% TOC removal) became the controlling criteria. It was possible to achieve different goals of turbidity and TOC removals. Although the optimum region of TOC removal was more acidic than that of turbidity removal, there was no conflict between these two removals. The best coagulant was found to be different depending upon the evaluation tool: maximum and optimum removal. ferric chloride was more effective than alum in terms of the maximum TOC removal, while Al-based coagulant such as alum or PACl was the best coagulant in terms of the optimum TOC removal.

Chemical Precipitation Treatment for the Disperse Dyes Removal (분산성 염료의 제거를 위한 응집처리)

  • 한명호;박종득;허만우
    • Textile Coloration and Finishing
    • /
    • v.14 no.2
    • /
    • pp.40-50
    • /
    • 2002
  • In order to remove the pollutants effectively in the dye wastewater by chemical precipitation process, coagulation arid flocculation test were carried out using several coagulants on various reaction conditions. It was found that the Ferrous sulfate was the most effective coagulant for the removal of disperse dye(B79), and we could get the best result lot the removal of disperse dye(B56) in the aspects of TOC removal efficiency and sludge field. When the Ferrous sulfate dosage was $800mg/\ell$, the sludge settling velocity was very fast>, and the color was effectively removed in the disperse dye(B79) solution. Although the color removal was ineffective when the Alum was used as a coagulant, the sludge field was decreased in comparison with the Ferrous sulfate or the Ferric sulfate was used in the disperse dye(B56) solution. The general color removal effect for the disperse dye(B56 and B79) solutions, the Ferric sulfate was more proper coagulant than the Alum. It was showed that TOC removal was improved 5% and over by the addition of Calcium hydroxide, and $30mg/\ell$ of sludge yield was decreased(B79). When Alum or Ferric sulfate was used as a coagulant, pH condition for most effective color removal was 5 in B56 solution. In case of Ferrous sulfate as a coagulant, most effective pH condition for color removal was 9. When Ferric sulfate or Ferrous sulfate was used as a coagulant, pH condition for most effective color removal was 9 in B79 solution.

Determination of Optimun Coagulant Dosage for Effective Water Treatment of Chinyang Lake -The Effect of Coagulant Dosing on Remoaval of Colloidal Pollutants- (진양호소수의 효과적인 정수처리를 위한 최적응집제 주입량 결정 -콜로이드성 오염물질 처리를 위한 응집제 주입효과-)

  • 이원규;조주식;이홍재;허종수
    • Journal of Environmental Science International
    • /
    • v.7 no.6
    • /
    • pp.761-772
    • /
    • 1998
  • This study was performed to determine the optimum coagulant dosing amount for effective treatment of raw water. The removal rate of turbidity and the variations of water qualities according to various dosage of coagulants such as Alum, PAC and PACS were investigated. The optimum coagulant dosing amount to make the lowest turbidity of water were 35mg/ι t of Alum, 30mg/ι of PAC and 10mg/ι of PACS in case of 5 NTU of raw water turbidity, and 30mg/ι of Alum, 25mg/ι of PAC and 10mg/ι of PACS in case of 10 NTU of that, respectively. The removal rates of turbidity at 4 min. and 8 min. of settling time were 10 and 72% of Alum, 44 and 62% of PAC and 25 and 55% of PACS in case of 5 NTU, and 52 and 70% of Alum, 90 and 95% of PAC and 10 and 28% of PACS in case of 10 NTU, respectively. Judging from the settling capability of floc., the reaction time of floe. formation and removal efficiency of turbidity, PAC was evaluated as more effective coagulant than Alum and PACS. Also PAC was regarded as the most effective coagulant when the water supply was changed sharply and the fluctuation of the surface loading occured with wide and sharp in settling basin. pH and alkalinity of the water were decreased with increasing coagulants dosage. But pH and alkalinity were not decreased below 5.8 which is the standard for drinking water quality, and 10mg/ι which is the limit concentration of floc. breakage, respectively. Residual Al of the treated water was decreased with increasing coagulants dosage in case of 5 and 10NTU of raw water turbidity. $KMnO_4$ consumption of the water was decreased with increasing coagulants dosage. The reduction rate of $KMnO_4$ consumption at the optimum coagulants dosage were 39% of Alum. 18% of PAC and 11% of PACS in case of 5 NTU of raw water turbidity, and 42% of Alum, 27% of PAC and 36% of PACS in case of 10 NTU of that, respectively. Any relationship was not found between the removal rate of turbidity and KMnO$_4$ consumption. TOC of the water was a bit decreased with increasing coagulants dosage up to 30mg/ι but not changed above 30mg/ι of coagulants dosage. The degree of TOC reduction was increased in the order of Alum, PAC and PACS treatment. Zeta potential of the colloidal floe. at the optimum coagulants dosage was in the range of -20~-15mV in case of 5 NTU of raw water turbidity and 0~0.5mV in case of 10 NTU of that. respectively. Although the kinds and dosages of coagulants were different, zeta potential range were fixed under the conditions of the best coagulation efficiency.

  • PDF

A Study on Alum recovery and reuse from the sludge in water treatment plant. (상수도 정수장 오이중 Alum회수 및 재활용에 관한 연구)

  • 김관천;노기환;강영식;이치영;류일광
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.1
    • /
    • pp.86-96
    • /
    • 1995
  • Alum recovery has recently gained more attention because many water utilities need to improve their sludge handling and disposal practices. As part of an overall sludge management program recovery can reduce the amount of solids and allow for reuse of the recovered Alum as a coagulant. This study was examined the effectiveness of Alum recovery from the Sludge at the D water treatment plant in Kwangju city. The results were summarized as follows 1. Alum recovery was obtained sufficiently acidification(An optimum condition was pH2-3) With $H_{2}SO_{4}$ to settled sludge. In this case recovered liquid Alum from sludge of 2.1% solids concentration at pH 2.1 was contains Aluminum $1,602mg/{\ell}$(as $Al_{2}O_{3}$ 0.3% ) and other metal of low level. 2. It was an optimum condition to all reuse of recovered Alum as a coagulant that rate of Commercial Alum:Recovered Alum=$14{\mu}{\ell}/{\ell}{\;}:{\;}200{\mu}{\ell}/{\ell}$ In a result of Jar Tests. 3. It was a result of Alum recovery from sludge, the reduction effect of amount of solids was about 57.4%. 4. If all recovered Alum were reused the reduction effect of solid wastes disposal cost and chemical drug's cost was about 22%.

  • PDF

Comparing Flotation Efficiency of Algae-Containing Raw Water using PAC Coagulants (PAC 응집제 종류에 따른 조류가 포함된 상수원수의 부상분리효율 비교)

  • Jong-Won Park;Seong-Kee Min;Hye-Yeon Lee;Churl-Jong Yun;Chang-Han Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.5
    • /
    • pp.355-363
    • /
    • 2023
  • This study used a batch DAF (dissolved air flotation) jar tester to evaluate the algae removal efficiency of alum and PAC coagulants during coagulation, flocculation, and flotation. Optimal coagulant dosages were 0.06 ~ 0.15 mL/L (12.0 ~ 26.0 mg Al/L,17%), 0.08 ~ 0.20 mL/L (10.0 ~ 24.0 mg Al/L, 12%), 0.25 ~ 0.30 mL/L (25.0 ~ 30.0 mg Al/L, 10%) for PAC, and 3.0 ~ 5.0 mL/L (81.0 ~ 135.0 mg Al/L, 2.7%) for alum. Turbidity of treated water was 1.0 ~ 2.0 NTU in optimal coagulation, flocculation, and flotation conditions for the four coagulants types. The amount of coagulant injected tended to decrease with increasing Al content in the coagulant, as follows : 17% PAC < 12% PAC < 10% PAC < 2.7% alum. Turbidity removal efficiencies were in the order of 12% PAC (93.6%) > 10% PAC (92.7%) > 17% PAC (91.3%) > 2.7% Alum (88.1%).

Evaluation of Coagulation-UF Process Considering Residual Aluminuim Concentration as Seawater Desalination Pretreatment (해수담수화 전처리 공정으로써 잔류 알루미늄 농도를 고려한 응집-UF 공정 연구)

  • Son, Dong-Min;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.7
    • /
    • pp.495-502
    • /
    • 2013
  • This work was performed to investigate proper condition of coagulation treatment as UF process pretreatment that consider UF permeate flux and residual Al concentration. The coagulant used an alum as $Al_2(SO_4)_3{\cdot}16H_2O$ and PACl (r = 1.5) made this study. The experiment was tested in adjusting conditions such as alum dose, flocculation time and coagulation pH of seawater. Consequently, higher coagulant dose lead to elevation of UF permeate flux while residual aluminium also increased in condition of pH 8.0. The most suitable condition which has a good permeate flux and low residual aluminium, in this works, was coagulant dose of 0.7 mg/L (as Al, alum) and 1.2 mg/L (as Al, PACl) and coagulation pH 6.5. In addition, applying the flocculation time with 1.2 mg/L of PACI reduced. The flocculation time reduced UF permeate flux in using alum.

Influencing Factors on NOM Removal using Blended Coagulants (혼합응집제에 의한 자연유기물질 제거에 미치는 영향 인자)

  • 명복태;우달식;최종헌;문철훈;이윤진;조영태;조관형;남상호
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.3
    • /
    • pp.96-103
    • /
    • 2001
  • This study was carried out to investigate the major factors for the removal of NOMs (Natural Organic Matters) by alum ferric chloride and blended coagulants that consisted of alum and ferric chloride. Investigated factors were pH, the dosage of coagulant, alkalinity, hardness and bloc strength. The particle size contained in the test water came from the Han River was also measured. DOC(Dissolved Organic Carbon) removal at pH 6 was two to three times higher than at pH 8.5. The blended coagulant showed 9 to 10 percent higher DOC removal efficiency and 2 to 4 percent higher turbidity under the same condition. Alkalinity consumption of alum, ferric chloride and blended coagulant was 81%, 90% and 86% of theoretical value, respectively. The limit concentration of alkalinity to avoid pin floe was 10 mg $CaCO_3/L$ when alum was used. Hardness had no apparent effect on coagulation. The residual turbidity and $UV_{254}$ showed a tendency of increasing with floc strength($sec^{-1}$) increase. The order of floe strength was the following; alum >blended coagulant > ferric chloride. The particle counter test showed 89 percent of the small particle size(SPS, $1~5{\;}{\mu}textrm{m}$) and 11 percent of the medium to large particle size(M.LPS, $5~125{\;}{\mu}textrm{m}$). At PH7.85, the particle removal efficiencies of SPS($1~5{\;}{\mu}textrm{m}$) and M.LPS($5~125{\;}{\mu}textrm{m}$) in the coagulation process were 81% and 95%, respectively.

  • PDF

Determination of Optimum Coagulant Dosage for Effective Water Treatement of Chyinyang Lake - The Effect of Coagulant Dosing on Removal of Algae- (진양호소수의 효과적인 정수처리를 위한 최적응집제 주입량 결정 -조류제거를 위한 응집제 주입효과-)

  • 이원규;조주식;이홍재;임영성;허종수
    • Journal of Environmental Science International
    • /
    • v.8 no.5
    • /
    • pp.625-631
    • /
    • 1999
  • This study was performed to determine the optimum coagulant dosing for effective treatment of raw water in Chinyang lake. Removal rates of algae and characteristics of the water according to coagulants dosage were investigated by treatment with Microcystis aeruginosa, which is a kind of blue-green algae, to the raw water below 5NTU. The coagulants dosage for maximum removal rate of algae were 30 mg/$\ell$ of Alum, 30 mg/$\ell$ of PAC and 10 mg/$\ell$ of PACS, respectively. The removal rate of algae in 30 mg/$\ell$ of PAC was highest as 85% compared with the other treatments. At the point of maximum removal rate of algae, the removal rates of turbidity were 34%, 66% and 22% in Alum, PAC and PACS, respectively. Residual Al was decreased depend upon decreasing turtidity in water by treatment of Alum or PAC, but decreased depend upon increasing turbidity in water by treatment of PACS. The removal rate of ${Mn}_{2+}$ in water was high in the order of Alum, PAC and PACS treatment. And ${Fe}_{2+}$ in water was not changed by treatemnt of these coagulants. Particle numbers distributions according to the particle size of suspended solids that were not precipitated at 8 min. of settling time after treatment of coagulants dosage for the maximum removal rate of algae were investigated. Most of the particle sizes were below 30 $\mu$m and particle numbers distributions below 10 $\mu$m were 64%, 56% and 66% by treatment of Alum, PAC and PACS, respectively. Zeta potential was in the range of -6.1~-9.7 mV at optimum coagulants dosage for algae removal.

  • PDF