DOI QR코드

DOI QR Code

Evaluation of Coagulation-UF Process Considering Residual Aluminuim Concentration as Seawater Desalination Pretreatment

해수담수화 전처리 공정으로써 잔류 알루미늄 농도를 고려한 응집-UF 공정 연구

  • Son, Dong-Min (Department of Environmental Engineering, Pukyong National University) ;
  • Kang, Lim-Seok (Department of Environmental Engineering, Pukyong National University)
  • Received : 2013.05.10
  • Accepted : 2013.07.10
  • Published : 2013.07.30

Abstract

This work was performed to investigate proper condition of coagulation treatment as UF process pretreatment that consider UF permeate flux and residual Al concentration. The coagulant used an alum as $Al_2(SO_4)_3{\cdot}16H_2O$ and PACl (r = 1.5) made this study. The experiment was tested in adjusting conditions such as alum dose, flocculation time and coagulation pH of seawater. Consequently, higher coagulant dose lead to elevation of UF permeate flux while residual aluminium also increased in condition of pH 8.0. The most suitable condition which has a good permeate flux and low residual aluminium, in this works, was coagulant dose of 0.7 mg/L (as Al, alum) and 1.2 mg/L (as Al, PACl) and coagulation pH 6.5. In addition, applying the flocculation time with 1.2 mg/L of PACI reduced. The flocculation time reduced UF permeate flux in using alum.

본 연구는 UF공정의 전처리로써 Al(III)계 응집제인 alum과 PACl을 사용한 응집공정 적용 시 두 응집제의 효율 비교 및 잔류 알루미늄 농도를 고려한 최적 운전 조건을 알아보기 위해 응집제 주입농도, 완속교반의 적용 그리고 해수 원수의 pH를 변화하여 UF막 flux 및 잔류 알루미늄 이온 농도를 조사했다. 그 결과 pH 8.0 조건에서 alum의 주입농도가 증가할수록 flux 또한 증가하였으며 완속교반은 UF막 flux를 오히려 감소시킨 것으로 조사된 반면 PACl의 경우 주입농도가 증가할수록 flux는 일부 감소하는 경향을 보였으며 alum과는 반대로 완속교반 적용시 flux 또한 증가하였다. 반면에 pH 6.5 조건에서 alum 주입량이 0.7 mg/L (as Al)일 때 UF막 flux의 효율이 가장 좋았고 잔류 알루미늄 농도는 0.05 mg/L (as Al) 이하로 측정되었다. PACl의 경우 UF막 flux 측면에서는 최적 조건은 pH 8.0, 주입농도 1.2 mg/L (as Al) 그리고 완속교반 시간을 적용하였을 때였으며 잔류 알루미늄 농도를 고려한 최적 주입조건은 pH 6.5 조건에서 주입농도를 1.2 mg/L (as Al)일 때로 조사되었다.

Keywords

References

  1. Bonnelye, V., Sanz, M. A., Durand, J. -P., Plasse, L., Gueguen, F. and Mazounie, P., "Reverse osmosis on open intake seawater: pre-treatment strategy," Desalination, 167, 191-200 (2004). https://doi.org/10.1016/j.desal.2004.06.128
  2. Bu-Rashid, K. A. and Czolkoss, W., "Pilot tests of multibore UF membrane at Addur SWRO desalination plant," Bahrain. Desalination, 203, 229-242(2007). https://doi.org/10.1016/j.desal.2006.04.010
  3. Chua, K. T., Hawlader, M. N. A. and Malek, A., "Pretreatment of seawater: results of pilot trials in Singapore," Desalination, 159, 225-243(2003). https://doi.org/10.1016/S0011-9164(03)90075-0
  4. Vedavyasan, C. V., "Pretreatment trends-and overview," Desalination, 203, 296-299(2007). https://doi.org/10.1016/j.desal.2006.04.012
  5. Wilf, M. and Bartels, C., "Integrated membrane desalination systems-current status and projected development," Hydranautics Available from: http://www.membranes.com/docs/papers/New%20Folder/Abstract%20for%20Tianjin%20-%20Hydranautics.pdf(2006).
  6. Xu, J., Ruan, G., Chu, X., Yao, Y., Su, B. and Gao, C., "A pilot study of UF pretreatment without any chemicals for SWRO desalination in China," Desalination, 207, 216-226 (2007). https://doi.org/10.1016/j.desal.2006.08.006
  7. Brehant, A., Bonnelye, V. and Perez, M., "Assessment of ultrafiltration as a pretreatment of reverse osmosis membranes for surface seawater desalination," Water Sci. Technol.: Water Supply, 3(5-6), 437-445(2003).
  8. Wiesner, M. and J-M. Laine., "Coagulation and membrane separation in water treatent membrane processes," New York, NY: McGraw-Hill(1996).
  9. Sweetwater Technologies., "Potable Organic Polymers-Types and Applications," Government Engineering. Available rom: http://www.govengr.com/ArticlesNov06/potable.pdf(2006).
  10. Gabelich, C., Williams, M. D., Rahardianto, A., Franklin, J. C. and Cohen, Y., "High-recovery reverse osmosis desalination using intermediate chemical demineralization," J. Membr. Sci., 301, 131-141(2007). https://doi.org/10.1016/j.memsci.2007.06.007
  11. Amirtharajah, A. and Mills, K. M., "Rapid-Mix Design for Mechanisms of Alum Coagulation," J. AWWA, 74(4), 210-216(1982).
  12. Bersillon, J. L., Hsu, P. H. and Fiessinger. F., "Characterization of hydroxy-aluminum solutions," Soil Sci. Soc. Am. J., 51, 825-828(1988).
  13. Smith, R. M., "Relation among equilibrium and nonequilibrium aqueous species of aluminum hydroxy complexes," Nonequilibrium systems in natural water chemistry (Gould, R.F. eds.), A.C.S. Advances in Chemistry Series No. 106, Washington, D.C., pp. 250-279(1971).
  14. Han, S. W., "Production and application of polymeric inorganic coagulants for water treatment," Ph.D thesis, Dept. of Envir. Engineering, University of Pukyung National, Busan, Korea(2000).
  15. Hydranautics., "Chemical Pretreatment for RO and NF," Technical Application Bulletin No. 111, Rev. B Available from: Available from: http://www.membranes.com/docs/tab/TAB111.pdf(2003).
  16. Hermia, J., "Constant pressure blocking filtration laws: application to power-law non-Newtonian fluids," Trans. Inst. Chem. Eng., 60, 183(1982).
  17. Standard Test Method for Silt Density Index (SDI) of water, D 4189-95 ASTM.
  18. Lahoussine-Turcaud, V., Wiesner, M., Bottero, J. Y. and Mellevialle, J., "Coagulation pretreatment for ultra-Filtration of a surface water," J. AWWA, 81(12), 76-81(1990).
  19. Lee, J. D., Lee, S. H., Jo, M. H., Park, P. K., Lee, J. H. and Kwak, J. W., "Effect of Coagulation Conditions on Membrane Filtration Characteristics in Coagulation-Microfiltration Process for Water Treatment," Environ. Sci. Technol., 34, 3780-3788(2000). https://doi.org/10.1021/es9907461
  20. Soffer, Y., Ben, A. R. and Adin, A., "Membrane for water reuse: effect of pre-coagulation on fouling," Eng. Sci., 45(1), 13-25(2000).
  21. Kim, S., Lee, I. S., Kim, K. J., Shon, D. M. and Kang, L. S., "Dual media filtration and ultrafiltration as pretreatment options of low-turbidity seawater reverse osmosis processes," Desalination Water Treat., 33, 329-336 (2011). https://doi.org/10.5004/dwt.2011.2661
  22. Rebhun, M. and Lulie, M., "Control of Organic Matter by Coagulation and floc Separation," Water Sci. Technol, 27(11), 1-20(1993). https://doi.org/10.1021/es00038a700
  23. Kang, L. S., Han, S. W. and Jung, C. W., "Synthesis and Characterization of Polymeric Inorganic Coagulants for Water Treatment," Kor. J. Chem. Eng., 18(6), 965-970(2001). https://doi.org/10.1007/BF02705627
  24. Yoon, S. H., Lee, C. H. and Fane, A. G., "Effect of calcium ion on the fouling of nanofilter by humic acid in drinking water production," Water Res., 32(7), 2180-2186(1998). https://doi.org/10.1016/S0043-1354(97)00416-8
  25. White, M. C. Thompson, J. D., Harrington, G. W. and Singer, P. C., "Evaluating criteria for enhanced coagulation compliance," J. AWWA, 89(5), 64-77(1997).
  26. Wiesner, M. R., Clark, M. M. and Mallevialle, J., "Membrane filtration of coagulated suspensions," J. Environ. Eng. ASCE, 115(1), 20-40(1989). https://doi.org/10.1061/(ASCE)0733-9372(1989)115:1(20)
  27. Peuchot M. M. and Ben, A. R., "A cross-flow microfiltration model based on intergaration of the mass transport equation," J. Membr. Sci., 108, 57-70(1992).
  28. Zouboulis, A. I. and Traskas, G., "Comparable evaluation of various commercially available aluminum-based coagulants for the treatment of surface water and for the post-treatment of urban wastewater," J. Chem. Technol. Biotechnol., 80, 1136-1147(2005). https://doi.org/10.1002/jctb.1300
  29. Thuy, K. T., "Application of Aluminum based coagulants for the Treatment of Turbidity and Natural organic matter in Surface water and the Treatment of Phosphorus in Sewage effluent," Ph.D thesis, Dept. Environ. Eng., University of Pukyung National, Busan, Korea(2012).
  30. Gabelich, C. J., Ishida, K. P., Gerringer, F. W., Evangelista, R., Kalyan, M. and Suffet, I. H. "Control of residual aluminum from conventional treatment to improve reverse osmosis performance," Available from: http://escholarship.org/uc/item/7q66f96m#page-1(2006).